ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous LSST and Euclid observations - advantages for Solar System Objects

75   0   0.0 ( 0 )
 نشر من قبل Colin Snodgrass
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ESA Euclid mission is a space telescope that will survey ~15,000 square degrees of the sky, primarily to study the distant universe (constraining cosmological parameters through the lensing of galaxies). It is also expected to observe ~150,000 Solar System Objects (SSOs), primarily in poorly understood high inclination populations, as it will mostly avoid +/-15 degrees from the ecliptic plane. With a launch date of 2022 and a 6 year survey, Euclid and LSST will operate at the same time, and have complementary capabilities. We propose a LSST mini-survey to coordinate quasi-simultaneous observations between these two powerful observatories, when possible, with the primary aim of greatly improving the orbits of SSOs discovered by these facilities. As Euclid will operate from a halo orbit around the Sun-Earth L2 Lagrangian point, there will be significant parallax between observations from Earth and Euclid (0.01 AU). This means that simultaneous observations will give an independent distance measurement to SSOs, giving additional constraints on orbits compared to single Euclid visits.



قيم البحث

اقرأ أيضاً

The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Gaia Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center. Positions are provided for each Gaia observation at CCD level. As additional information, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations. We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality. To exploit the epoch astrometry of asteroids in Gaia DR2 it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The distribution of residuals allowed us to identify possible contaminants in the data set. Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP). The overall astrometric performance is close to the expectations, with an optimal range of brightness G~12-17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G~12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by preliminary tests on the detection of subtle non-gravitational effects.
The Large Synoptic Survey Telescope (LSST) is expected to increase known small solar system object populations by an order of magnitude or more over the next decade, enabling a broad array of transformative solar system science investigations to be p erformed. In this white paper, we discuss software tools and infrastructure that we anticipate will be needed to conduct these investigations and outline possible approaches for implementing them. Feedback from the community or contributions to future updates of this work are welcome. Our aim is for this white paper to encourage further consideration of the software development needs of the LSST solar system science community, and also to be a call to action for working to meet those needs in advance of the expected start of the survey in late 2022.
121 - Benoit Carry 2017
The ESA Euclid mission has been designed to map the geometry of the dark Universe. Scheduled for launch in 2020, it will conduct a six-years visible and NIR imaging and spectroscopic survey over 15,000 deg 2 down to mag~24.5. Although the survey will avoid low ecliptic latitudes, the survey pattern in repeated sequences of four broad-band filters seems well-adapted to Solar System objects (SSOs) detection and characterization. We aim at evaluating Euclid capability to discover SSOs, and measure their position, apparent magnitude, and SED. Also, we investigate how these measurements can lead to the determination of their orbits, morphology, physical properties, and surface composition. We use current census of SSOs to estimate the number of SSOs detectable by Euclid. Then we estimate how Euclid will constrain the SSOs dynamical, physical, and compositional properties. With current survey design, about 150,000 SSOs, mainly from the asteroid main-belt, should be observed by Euclid. These objects will all have high inclination. There is a potential for discovery of several 10,000 SSOs, in particular KBOs at high declination. Euclid observations will refine the spectral classification of SSOs by extending the spectral coverage provided by, e.g. Gaia and the LSST to 2 microns. The time-resolved photometry, combined with sparse photometry will contribute to the determination of SSO rotation period, spin orientation, and shape model. The sharp and stable point-spread function of Euclid will also allow to resolve KBO binary systems and detect activity around Centaurs. The depth of Euclid survey, its spectral coverage, and observation cadence has great potential for Solar System research. A dedicated processing for SSOs is being set in place to produce catalogs of astrometry, multi-color and time-resolved photometry, and spectral classification of some 10$^5$ SSOs, delivered as Legacy Science.
A foundational goal of the Large Synoptic Survey Telescope (LSST) is to map the Solar System small body populations that provide key windows into understanding of its formation and evolution. This is especially true of the populations of the Outer So lar System -- objects at the orbit of Neptune $r > 30$AU and beyond. In this whitepaper, we propose a minimal change to the LSST cadence that can greatly enhance LSSTs ability to discover faint distant Solar System objects across the entire wide-fast-deep (WFD) survey area. Specifically, we propose that the WFD cadence be constrained so as to deliver least one sequence of $gtrsim 10$ visits per year taken in a $sim 10$ day period in any combination of $g, r$, and $i$ bands. Combined with advanced shift-and-stack algorithms (Whidden et al. 2019) this modification would enable a nearly complete census of the outer Solar System to $sim 25.5$ magnitude, yielding $4-8$x more KBO discoveries than with single-epoch baseline, and enabling rapid identification and follow-up of unusual distant Solar System objects in $gtrsim 5$x greater volume of space. These increases would enhance the science cases discussed in Schwamb et al. (2018) whitepaper, including probing Neptunes past migration history as well as discovering hypothesized planet(s) beyond the orbit of Neptune (or at least placing significant constraints on their existence).
Euclid and the Large Synoptic Survey Telescope (LSST) are poised to dramatically change the astronomy landscape early in the next decade. The combination of high cadence, deep, wide-field optical photometry from LSST with high resolution, wide-field optical photometry and near-infrared photometry and spectroscopy from Euclid will be powerful for addressing a wide range of astrophysical questions. We explore Euclid/LSST synergy, ignoring the political issues associated with data access to focus on the scientific, technical, and financial benefits of coordination. We focus primarily on dark energy cosmology, but also discuss galaxy evolution, transient objects, solar system science, and galaxy cluster studies. We concentrate on synergies that require coordination in cadence or survey overlap, or would benefit from pixel-level co-processing that is beyond the scope of what is currently planned, rather than scientific programs that could be accomplished only at the catalog level without coordination in data processing or survey strategies. We provide two quantitative examples of scientific synergies: the decrease in photo-z errors (benefitting many science cases) when high resolution Euclid data are used for LSST photo-z determination, and the resulting increase in weak lensing signal-to-noise ratio from smaller photo-z errors. We briefly discuss other areas of coordination, including high performance computing resources and calibration data. Finally, we address concerns about the loss of independence and potential cross-checks between the two missions and potential consequences of not collaborating.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا