ﻻ يوجد ملخص باللغة العربية
Just over fifty years ago, Pierre Hohenberg developed a rigorous proof of the non-existence of long-range order in a two-dimensional superfluid or superconductor at finite temperatures. The proof was immediately extended by N. D. Mermin and H. Wagner to the Heisenberg ferromagnet and antiferromagnet, and shortly thereafter, by Mermin to prove the absence of translational long-range order in a two-dimensional crystal, whether in quantum or classical mechanics. In this paper, we present an extension of the Hohenberg-Mermin-Wagner theorem to give a rigorous proof of the impossibility of long-range ferromagnetic order in an itinerant electron system without spin-orbit coupling or magnetic dipole interactions. We also comment on some situations where there are compelling arguments that long-range order is impossible but no rigorous proof has been given, as well as situations, such as a magnet with long range interactions, or orientational order in a two-dimensional crystal, where long-range order can occur that breaks a continuous symmetry.
We study how universality classes of O(N)-symmetric models depend continuously on the dimension d and the number of field components N. We observe, from a renormalization group perspective, how the implications of the Mermin-Wagner-Hohenberg theorem
The relativistic equilibrium velocity distribution plays a key role in describing several high-energy and astrophysical effects. Recently, computer simulations favored Juttners as the relativistic generalization of Maxwells distribution for d=1,2,3 s
The Hohenberg-Kohn theorem plays a fundamental role in density functional theory, which has become a basic tool for the study of electronic structure of matter. In this article, we study the Hohenberg-Kohn theorem for a class of external potentials based on a unique continuation principle.
We prove the vertex-reinforced jump process (VRJP) is recurrent in two dimensions for any translation invariant finite range initial rates. Our proof has two main ingredients. The first is a direct connection between the VRJP and sigma models whose t
When granular systems are modeled by frictionless hard spheres, particle-particle collisions are considered as instantaneous events. This implies that while the velocities change according to the collision rule, the positions of the particles are the