ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Interpretable Characteristic Kernels via Decision Forests

82   0   0.0 ( 0 )
 نشر من قبل Cencheng Shen
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Decision forests are popular tools for classification and regression. These forests naturally produce proximity matrices measuring how often each pair of observations lies in the same leaf node. It has been demonstrated that these proximity matrices can be thought of as kernels, connecting the decision forest literature to the extensive kernel machine literature. While other kernels are known to have strong theoretical properties such as being characteristic, no similar result is available for any decision forest based kernel. In this manuscript,we prove that the decision forest induced proximity can be made characteristic, which can be used to yield a universally consistent statistic for testing independence. We demonstrate the performance of the induced kernel on a suite of 20 high-dimensional independence test settings. We also show how this learning kernel offers insights into relative feature importance. The decision forest induced kernel typically achieves substantially higher testing power than existing popular methods in statistical tests.

قيم البحث

اقرأ أيضاً

By redefining the conventional notions of layers, we present an alternative view on finitely wide, fully trainable deep neural networks as stacked linear models in feature spaces, leading to a kernel machine interpretation. Based on this construction , we then propose a provably optimal modular learning framework for classification that does not require between-module backpropagation. This modular approach brings new insights into the label requirement of deep learning: It leverages only implicit pairwise labels (weak supervision) when learning the hidden modules. When training the output module, on the other hand, it requires full supervision but achieves high label efficiency, needing as few as 10 randomly selected labeled examples (one from each class) to achieve 94.88% accuracy on CIFAR-10 using a ResNet-18 backbone. Moreover, modular training enables fully modularized deep learning workflows, which then simplify the design and implementation of pipelines and improve the maintainability and reusability of models. To showcase the advantages of such a modularized workflow, we describe a simple yet reliable method for estimating reusability of pre-trained modules as well as task transferability in a transfer learning setting. At practically no computation overhead, it precisely described the task space structure of 15 binary classification tasks from CIFAR-10.
In this paper, we propose a generic model transfer scheme to make Convlutional Neural Networks (CNNs) interpretable, while maintaining their high classification accuracy. We achieve this by building a differentiable decision forest on top of CNNs, wh ich enjoys two characteristics: 1) During training, the tree hierarchies of the forest are learned in a top-down manner under the guidance from the category semantics embedded in the pre-trained CNN weights; 2) During inference, a single decision tree is dynamically selected from the forest for each input sample, enabling the transferred model to make sequential decisions corresponding to the attributes shared by semantically-similar categories, rather than directly performing flat classification. We name the transferred model deep Dynamic Sequential Decision Forest (dDSDF). Experimental results show that dDSDF not only achieves higher classification accuracy than its conuterpart, i.e., the original CNN, but has much better interpretability, as qualitatively it has plausible hierarchies and quantitatively it leads to more precise saliency maps.
Interpretable surrogates of black-box predictors trained on high-dimensional tabular datasets can struggle to generate comprehensible explanations in the presence of correlated variables. We propose a model-agnostic interpretable surrogate that provi des global and local explanations of black-box classifiers to address this issue. We introduce the idea of concepts as intuitive groupings of variables that are either defined by a domain expert or automatically discovered using correlation coefficients. Concepts are embedded in a surrogate decision tree to enhance its comprehensibility. First experiments on FRED-MD, a macroeconomic database with 134 variables, show improvement in human-interpretability while accuracy and fidelity of the surrogate model are preserved.
Many Machine Learning algorithms, such as deep neural networks, have long been criticized for being black-boxes-a kind of models unable to provide how it arrive at a decision without further efforts to interpret. This problem has raised concerns on m odel applications trust, safety, nondiscrimination, and other ethical issues. In this paper, we discuss the machine learning interpretability of a real-world application, eXtreme Multi-label Learning (XML), which involves learning models from annotated data with many pre-defined labels. We propose a two-step XML approach that combines deep non-negative autoencoder with other multi-label classifiers to tackle different data applications with a large number of labels. Our experimental result shows that the proposed approach is able to cope with many-label problems as well as to provide interpretable label hierarchies and dependencies that helps us understand how the model recognizes the existences of objects in an image.
Throughout music history, theorists have identified and documented interpretable rules that capture the decisions of composers. This paper asks, Can a machine behave like a music theorist? It presents MUS-ROVER, a self-learning system for automatical ly discovering rules from symbolic music. MUS-ROVER performs feature learning via $n$-gram models to extract compositional rules --- statistical patterns over the resulting features. We evaluate MUS-ROVER on Bachs (SATB) chorales, demonstrating that it can recover known rules, as well as identify new, characteristic patterns for further study. We discuss how the extracted rules can be used in both machine and human composition.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا