ترغب بنشر مسار تعليمي؟ اضغط هنا

A rule-based system proposal to aid in the evaluation and decision-making in external beam radiation treatment planning

102   0   0.0 ( 0 )
 نشر من قبل Eduardo Tavares Costa
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As part of a plan launched by the Ministry of Health of Brazil to increase the availability of linear accelerators for radiotherapy treatment for the whole country, for which Varian Medical Systems company has won the bidding, a technical cooperation agreement was signed inviting Brazilian Scientific and Technological Institutions to participate in a technology transfer program. As a result, jointly, the Eldorado Research Institute and the Center for Biomedical Engineering of the University of Campinas presents in this work, the concepts behind of a proposed rule engine to aid in the evaluation and decision-making in radiotherapy treatment planning. Normally, the determination of the radiation dose for a given patient is a complex and intensive procedure, which requires a lot of domain knowledge and subjective experience from the oncologists team. In order to help them in this complex task, and additionally, provide an auxiliary tool for less experienced oncologists, it is presented a project conception of a software system that will make use of a hybrid data-oriented approach. The proposed rule engine will apply both inference mechanism and expression evaluation to verify and accredit the quality of an external beam radiation treatment plan by considering, at first, the 3D-conformal radiotherapy (3DCRT) technique.



قيم البحث

اقرأ أيضاً

49 - Huma Samin 2021
Decision-making for self-adaptation approaches need to address different challenges, including the quantification of the uncertainty of events that cannot be foreseen in advance and their effects, and dealing with conflicting objectives that inherent ly involve multi-objective decision making (e.g., avoiding costs vs. providing reliable service). To enable researchers to evaluate and compare decision-making techniques for self-adaptation, we present the RDMSim exemplar. RDMSim enables researchers to evaluate and compare techniques for decision-making under environmental uncertainty that support self-adaptation. The focus of the exemplar is on the domain problem related to Remote Data Mirroring, which gives opportunity to face the challenges described above. RDMSim provides probe and effector components for easy integration with external adaptation managers, which are associated with decision-making techniques and based on the MAPE-K loop. Specifically, the paper presents (i) RDMSim, a simulator for real-world experimentation, (ii) a set of realistic simulation scenarios that can be used for experimentation and comparison purposes, (iii) data for the sake of comparison.
Value-based methods for reinforcement learning lack generally applicable ways to derive behavior from a value function. Many approaches involve approximate value iteration (e.g., $Q$-learning), and acting greedily with respect to the estimates with a n arbitrary degree of entropy to ensure that the state-space is sufficiently explored. Behavior based on explicit greedification assumes that the values reflect those of textit{some} policy, over which the greedy policy will be an improvement. However, value-iteration can produce value functions that do not correspond to textit{any} policy. This is especially relevant in the function-approximation regime, when the true value function cant be perfectly represented. In this work, we explore the use of textit{inverse policy evaluation}, the process of solving for a likely policy given a value function, for deriving behavior from a value function. We provide theoretical and empirical results to show that inverse policy evaluation, combined with an approximate value iteration algorithm, is a feasible method for value-based control.
Society increasingly relies on machine learning models for automated decision making. Yet, efficiency gains from automation have come paired with concern for algorithmic discrimination that can systematize inequality. Recent work has proposed optimal post-processing methods that randomize classification decisions for a fraction of individuals, in order to achieve fairness measures related to parity in errors and calibration. These methods, however, have raised concern due to the information inefficiency, intra-group unfairness, and Pareto sub-optimality they entail. The present work proposes an alternative active framework for fair classification, where, in deployment, a decision-maker adaptively acquires information according to the needs of different groups or individuals, towards balancing disparities in classification performance. We propose two such methods, where information collection is adapted to group- and individual-level needs respectively. We show on real-world datasets that these can achieve: 1) calibration and single error parity (e.g., equal opportunity); and 2) parity in both false positive and false negative rates (i.e., equal odds). Moreover, we show that by leveraging their additional degree of freedom, active approaches can substantially outperform randomization-based classifiers previously considered optimal, while avoiding limitations such as intra-group unfairness.
Decision making is a vital function in this age of machine learning and artificial intelligence, yet its physical realization and theoretical fundamentals are still not completely understood. In our former study, we demonstrated that single-photons c an be used to make decisions in uncertain, dynamically changing environments. The two-armed bandit problem was successfully solved using the dual probabilistic and particle attributes of single photons. In this study, we present a category theoretic modeling and analysis of single-photon-based decision making, including a quantitative analysis that is in agreement with the experimental results. A category theoretic model reveals the complex interdependencies of subject matter entities in a simplified manner, even in dynamically changing environments. In particular, the octahedral and braid structures in triangulated categories provide a better understanding and quantitative metrics of the underlying mechanisms of a single-photon decision maker. This study provides both insight and a foundation for analyzing more complex and uncertain problems, to further machine learning and artificial intelligence.
Decision making models are constrained by taking the expert evaluations with pre-defined numerical or linguistic terms. We claim that the use of sentiment analysis will allow decision making models to consider expert evaluations in natural language. Accordingly, we propose the Sentiment Analysis based Multi-person Multi-criteria Decision Making (SA-MpMcDM) methodology for smarter decision aid, which builds the expert evaluations from their natural language reviews, and even from their numerical ratings if they are available. The SA-MpMcDM methodology incorporates an end-to-end multi-task deep learning model for aspect based sentiment analysis, named DOC-ABSADeepL model, able to identify the aspect categories mentioned in an expert review, and to distill their opinions and criteria. The individual evaluations are aggregated via the procedure named criteria weighting through the attention of the experts. We evaluate the methodology in a case study of restaurant choice using TripAdvisor reviews, hence we build, manually annotate, and release the TripR-2020 dataset of restaurant reviews. We analyze the SA-MpMcDM methodology in different scenarios using and not using natural language and numerical evaluations. The analysis shows that the combination of both sources of information results in a higher quality preference vector.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا