ﻻ يوجد ملخص باللغة العربية
We generalize Schwenks result that almost all trees contain any given limb to trees with positive integer vertex weights. The concept of characteristic polynomial is extended to such weighted trees and we prove almost all weighted trees have a cospectral mate. We also prove almost all trees contain $k$ cospectral vertices for any integer $kge2$.
We prove an upper bound on the number of pairwise strongly cospectral vertices in a normal Cayley graph, in terms of the multiplicities of its eigenvalues. We use this to determine an explicit bound in Cayley graphs of $mathbb{Z}_2^d$ and $mathbb{Z}_
In this paper we enumerate and give bijections for the following four sets of vertices among rooted ordered trees of a fixed size: (i) first-children of degree $k$ at level $ell$, (ii) non-first-children of degree $k$ at level $ell-1$, (iii) leaves h
In this paper we enumerate the cardinalities for the set of all vertices of outdegree $ge k$ at level $ge ell$ among all rooted ordered $d$-trees with $n$ edges. Our results unite and generalize several previous works in the literature.
Let $G$ be an $n$-vertex graph with adjacency matrix $A$, and $W=[e,Ae,ldots,A^{n-1}e]$ be the walk matrix of $G$, where $e$ is the all-one vector. In Wang [J. Combin. Theory, Ser. B, 122 (2017): 438-451], the author showed that any graph $G$ is uniq
We study regular graphs in which the random walks starting from a positive fraction of vertices have small mixing time. We prove that any such graph is virtually an expander and has no small separator. This answers a question of Pak [SODA, 2002]. As