ﻻ يوجد ملخص باللغة العربية
In this paper we enumerate and give bijections for the following four sets of vertices among rooted ordered trees of a fixed size: (i) first-children of degree $k$ at level $ell$, (ii) non-first-children of degree $k$ at level $ell-1$, (iii) leaves having $k-1$ elder siblings at level $ell$, and (iv) non-leaves of outdegree $k$ at level $ell-1$. Our results unite and generalize several previous works in the literature.
In this paper we enumerate the cardinalities for the set of all vertices of outdegree $ge k$ at level $ge ell$ among all rooted ordered $d$-trees with $n$ edges. Our results unite and generalize several previous works in the literature.
The Perron value $rho(T)$ of a rooted tree $T$ has a central role in the study of the algebraic connectivity and characteristic set, and it can be considered a weight of spectral nature for $T$. A different, combinatorial weight notion for $T$ - the
Let $T_{n}$ be the set of rooted labeled trees on $set{0,...,n}$. A maximal decreasing subtree of a rooted labeled tree is defined by the maximal subtree from the root with all edges being decreasing. In this paper, we study a new refinement $T_{n,k}
We generalize Schwenks result that almost all trees contain any given limb to trees with positive integer vertex weights. The concept of characteristic polynomial is extended to such weighted trees and we prove almost all weighted trees have a cospec
We introduce some natural families of distributions on rooted binary ranked plane trees with a view toward unifying ideas from various fields, including macroevolution, epidemiology, computational group theory, search algorithms and other fields. In