ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of jamming criticality on low-temperature anomalies in structural glasses

73   0   0.0 ( 0 )
 نشر من قبل Thibaud Maimbourg
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel mechanism for the anomalous behaviour of the specific heat in low-temperature amorphous solids. The analytic solution of a mean-field model belonging to the same universality class as high-dimensional glasses, the spherical perceptron, suggests that there exists a crossover temperature above which the specific heat scales linearly with temperature while below it a cubic scaling is displayed. This relies on two crucial features of the phase diagram: (i) The marginal stability of the free-energy landscape, which induces a gapless phase responsible for the emergence of a power-law scaling (ii) The vicinity of the classical jamming critical point, as the crossover temperature gets lowered when approaching it. This scenario arises from a direct study of the thermodynamics of the system in the quantum regime, where we show that, contrary to crystals, the Debye approximation does not hold.



قيم البحث

اقرأ أيضاً

We study link-diluted $pm J$ Ising spin glass models on the hierarchical lattice and on a three-dimensional lattice close to the percolation threshold. We show that previously computed zero temperature fixed points are unstable with respect to temper ature perturbations and do not belong to any critical line in the dilution-temperature plane. We discuss implications of the presence of such spurious unstable fixed points on the use of optimization algorithms, and we show how entropic effects should be taken into account to obtain the right physical behavior and critical points.
121 - M. Jeng , J. M. Schwarz 2007
We investigate kinetically constrained models of glassy transitions, and determine which model characteristics are crucial in allowing a rigorous proof that such models have discontinuous transitions with faster than power law diverging length and ti me scales. The models we investigate have constraints similar to that of the knights model, introduced by Toninelli, Biroli, and Fisher (TBF), but differing neighbor relations. We find that such knights-like models, otherwise known as models of jamming percolation, need a ``No Parallel Crossing rule for the TBF proof of a glassy transition to be valid. Furthermore, most knight-like models fail a ``No Perpendicular Crossing requirement, and thus need modification to be made rigorous. We also show how the ``No Parallel Crossing requirement can be used to evaluate the provable glassiness of other correlated percolation models, by looking at models with more stable directions than the knights model. Finally, we show that the TBF proof does not generalize in any straightforward fashion for three-dimensiona
We present a mean field model for spin glasses with a natural notion of distance built in, namely, the Edwards-Anderson model on the diluted D-dimensional unit hypercube in the limit of large D. We show that finite D effects are strongly dependent on the connectivity, being much smaller for a fixed coordination number. We solve the non trivial problem of generating these lattices. Afterwards, we numerically study the nonequilibrium dynamics of the mean field spin glass. Our three main findings are: (i) the dynamics is ruled by an infinite number of time-sectors, (ii) the aging dynamics consists on the growth of coherent domains with a non vanishing surface-volume ratio, and (iii) the propagator in Fourier space follows the p^4 law. We study as well finite D effects in the nonequilibrium dynamics, finding that a naive finite size scaling ansatz works surprisingly well.
Using the dedicated computer Janus, we follow the nonequilibrium dynamics of the Ising spin glass in three dimensions for eleven orders of magnitude. The use of integral estimators for the coherence and correlation lengths allows us to study dynamic heterogeneities and the presence of a replicon mode and to obtain safe bounds on the Edwards-Anderson order parameter below the critical temperature. We obtain good agreement with experimental determinations of the temperature-dependent decay exponents for the thermoremanent magnetization. This magnitude is observed to scale with the much harder to measure coherence length, a potentially useful result for experimentalists. The exponents for energy relaxation display a linear dependence on temperature and reasonable extrapolations to the critical point. We conclude examining the time growth of the coherence length, with a comparison of critical and activated dynamics.
86 - A. Gandolfi 2000
We study zero-temperature, stochastic Ising models sigma(t) on a d-dimensional cubic lattice with (disordered) nearest-neighbor couplings independently chosen from a distribution mu on R and an initial spin configuration chosen uniformly at random. G iven d, call mu type I (resp., type F) if, for every x in the lattice, sigma(x,t) flips infinitely (resp., only finitely) many times as t goes to infinity (with probability one) --- or else mixed type M. Models of type I and M exhibit a zero-temperature version of ``local non-equilibration. For d=1, all types occur and the type of any mu is easy to determine. The main result of this paper is a proof that for d=2, plus/minus J models (where each coupling is independently chosen to be +J with probability alpha and -J with probability 1-alpha) are type M, unlike homogeneous models (type I) or continuous (finite mean) mus (type F). We also prove that all other noncontinuous disordered systems are type M for any d greater than or equal to 2. The plus/minus J proof is noteworthy in that it is much less ``local than the other (simpler) proof. Homogeneous and plus/minus J models for d greater than or equal to 3 remain an open problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا