ﻻ يوجد ملخص باللغة العربية
Nano-structuring is an extremely promising path to high performance thermoelectrics. Favorable improvements in thermal conductivity are attainable in many material systems, and theoretical work points to large improvements in electronic properties. However, realization of the electronic benefits in practical materials has been elusive experimentally. A key challenge is that experimental identification of the quantum confinement length, below which the thermoelectric power factor is significantly enhanced, remains elusive due to lack of simultaneous control of size and carrier density. Here we investigate gate tunable and temperature-dependent thermoelectric transport in $gamma$ phase indium selenide ($gamma$ InSe, n type semiconductor) samples with thickness varying from 7 to 29 nm. This allows us to properly map out dimension and doping space. Combining theoretical and experimental studies, we reveal that the sharper pre-edge of the conduction-band density of states arising from quantum confinement gives rise to an enhancement of the Seebeck coefficient and the power factor in the thinner InSe samples. Most importantly, we experimentally identify the role of the competition between quantum confinement length and thermal de Broglie wavelength in the enhancement of power factor. Our results provide an important and general experimental guideline for optimizing the power factor and improving the thermoelectric performance of two-dimensional layered semiconductors.
Symmetry breaking in two-dimensional layered materials plays a significant role in their macroscopic electrical, optical, magnetic and topological properties, including but not limited to spin-polarization effects, valley-contrasting physics, nonline
In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effect in practice.
In this work the above-band gap absorption spectrum in two-dimensional Dirac materials is calculated with account for the interaction between the photocarriers. Both the screened Rytova-Keldysh and pure Coulomb attraction potentials between the elect
Layered materials have uncommonly anisotropic thermal properties due to their strong in-plane covalent bonds and weak out-of-plane van der Waals interactions. Here we examine heat flow in graphene (graphite), h-BN, MoS2, and WS2 monolayers and bulk f
The growing library of two-dimensional layered materials is providing researchers with a wealth of opportunity to explore and tune physical phenomena at the nanoscale. Here, we review the experimental and theoretical state-of-art concerning the elect