ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering symmetry breaking in two-dimensional layered materials

135   0   0.0 ( 0 )
 نشر من قبل Luojun Du
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Symmetry breaking in two-dimensional layered materials plays a significant role in their macroscopic electrical, optical, magnetic and topological properties, including but not limited to spin-polarization effects, valley-contrasting physics, nonlinear Hall effects, nematic order, ferroelectricity, Bose-Einstein condensation and unconventional superconductivity. Engineering symmetry breaking of two-dimensional layered materials not only offers extraordinary opportunities to tune their physical properties, but also provides unprecedented possibilities to introduce completely new physics and technological innovations in electronics, photonics and optoelectronics. Indeed, over the past 15 years, a wide variety of physical, structural and chemical approaches have been developed to engineer symmetry breaking of two-dimensional layered materials. In this Review, we focus on the recent progresses on engineering the breaking of inversion, rotational, time reversal and spontaneous gauge symmetries in two-dimensional layered materials, and illustrate our perspectives on how these may lead to potential new physics and applications.



قيم البحث

اقرأ أيضاً

One-dimensional (1D) quantum systems, which are predicted to exhibit novel states of matter in theory, have been elusive in experiment. Here we report a superlattice method of creating artificial 1D quantum stripes, which offers dimensional tunabilit y from two- to one-dimensions. As a model system, we have fabricated 1D iridium (Ir) stripes using a-axis oriented superlattices of a relativistic Mott insulator Sr2IrO4 and a wide bandgap insulator LaSrGaO4, both of which are crystals with layered structure. In addition to the successful formation of 1D Ir-stripe structure, we have observed 1D quantum-confined electronic states from optical spectroscopy and resonant inelastic x-ray scattering. Since this 1D superlattice approach can be applied to a wide range of layered materials, it opens a new era of 1D science.
We develop the theory of anomalous elasticity in two-dimensional flexible materials with orthorhombic crystal symmetry. Remarkably, in the universal region, where characteristic length scales are larger than the rather small Ginzburg scale ${sim} 10, {rm nm}$, these materials possess an infinite set of flat phases which are connected by emergent continuous symmetry. This hidden symmetry leads to the formation of a stable line of fixed points corresponding to different phases. The same symmetry also enforces power law scaling with momentum of the anisotropic bending rigidity and Youngs modulus, controlled by a single universal exponent -- the very same along the whole line of fixed points. These anisotropic flat phases are uniquely labeled by the ratio of absolute Poissons ratios. We apply our theory to monolayer black phosphorus (phosphorene).
97 - Di Wang , Feng Tang , Jialin Ji 2019
Two-dimensional (2D) topological materials (TMs) have attracted tremendous attention due to the promise of revolutionary devices with non-dissipative electric or spin currents. Unfortunately, the scarcity of 2D TMs holds back the experimental realiza tion of such devices. In this work, based on our recently developed, highly efficient TM discovery algorithm using symmetry indicators, we explore the possible 2D TMs in all non-magnetic compounds in four recently proposed materials databases for possible 2D materials. We identify hundreds of 2D TM candidates, including 205 topological (crystalline) insulators and 299 topological semimetals. In particular, we highlight MoS, with a mirror Chern number of -4, as a possible experimental platform for studying the interaction-induced modification to the topological classification of materials. Our results winnow out the topologically interesting 2D materials from these databases and provide a TM gene pool which for further experimental studies.
Two-dimensional materials are emerging as a promising platform for ultrathin channels in field-effect transistors. To this aim, novel high-mobility semiconductors need to be found or engineered. While extrinsic mechanisms can in general be minimized by improving fabrication processes, the suppression of intrinsic scattering (driven e.g. by electron-phonon interactions) requires to modify the electronic or vibrational properties of the material. Since intervalley scattering critically affects mobilities, a powerful approach to enhance transport performance relies on engineering the valley structure. We show here the power of this strategy using uniaxial strain to lift degeneracies and suppress scattering into entire valleys, dramatically improving performance. This is shown in detail for arsenene, where a 2% strain stops scattering into 4 of the 6 valleys, and leads to a 600% increase in mobility. The mechanism is general and can be applied to many other materials, including in particular the isostructural antimonene and blue phosphorene.
Magnetotransport measurements are a popular way of characterizing the electronic structure of topological materials and often the resulting datasets cannot be described by the well-known Drude model due to large, non-parabolic contributions. In this work, we focus on the effects of magnetic fields on topological materials through a Zeeman term included in the model Hamiltonian. To this end, we re-evaluate the simplifications made in the derivations of the Drude model and pinpoint the scattering time and Fermi velocity as Zeeman-term dependent factors in the conductivity tensor. The driving mechanisms here are the aligment of spins along the magnetic field direction, which allows for backscattering, and a significant change to the Fermi velocity by the opening of a hybridization gap. After considering 2D and 3D Dirac states, as well as 2D Rashba surface states and the quasi-2D bulk states of 3D topological insulators, we find that the 2D Dirac states on the surfaces of 3D topological insulators produce magnetoresistance, that is significant enough to be noticable in experiments. As this magnetoresistance effect is strongly dependent on the spin-orbit energy, it can be used as a telltale sign of a Fermi energy located close to the Dirac point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا