ترغب بنشر مسار تعليمي؟ اضغط هنا

Why is quantum gravity so difficult (compared to QCD)?

121   0   0.0 ( 0 )
 نشر من قبل Hidenori Fukaya
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hidenori Fukaya




اسأل ChatGPT حول البحث

Gravity is difficult to quantize. This is a well-known fact but its reason is given simply by non-renormalizability of the Newton constant and little is discussed why among many quantum gauge theories, gravity is special. In this essay we try to treat the gravity as one of many gauge theories, and discuss how it is special and why it is difficult to quantize.



قيم البحث

اقرأ أيضاً

In this paper we use the AdS/CFT correspondence to refine and then establish a set of old conjectures about symmetries in quantum gravity. We first show that any global symmetry, discrete or continuous, in a bulk quantum gravity theory with a CFT dua l would lead to an inconsistency in that CFT, and thus that there are no bulk global symmetries in AdS/CFT. We then argue that any long-range bulk gauge symmetry leads to a global symmetry in the boundary CFT, whose consistency requires the existence of bulk dynamical objects which transform in all finite-dimensional irreducible representations of the bulk gauge group. We mostly assume that all internal symmetry groups are compact, but we also give a general condition on CFTs, which we expect to be true quite broadly, which implies this. We extend all of these results to the case of higher-form symmetries. Finally we extend a recently proposed new motivation for the weak gravity conjecture to more general gauge groups, reproducing the convex hull condition of Cheung and Remmen. An essential point, which we dwell on at length, is precisely defining what we mean by gauge and global symmetries in the bulk and boundary. Quantum field theory results we meet while assembling the necessary tools include continuous global symmetries without Noether currents, new perspectives on spontaneous symmetry-breaking and t Hooft anomalies, a new order parameter for confinement which works in the presence of fundamental quarks, a Hamiltonian lattice formulation of gauge theories with arbitrary discrete gauge groups, an extension of the Coleman-Mandula theorem to discrete symmetries, and an improved explanation of the decay $pi^0togamma gamma$ in the standard model of particle physics. We also describe new black hole solutions of the Einstein equation in $d+1$ dimensions with horizon topology $mathbb{T}^ptimes mathbb{S}^{d-p-1}$.
It is possible to couple Dirac-Born-Infeld (DBI) scalars possessing generalized Galilean internal shift symmetries (Galileons) to nonlinear massive gravity in four dimensions, in such a manner that the interactions maintain the Galilean symmetry. Suc h a construction is of interest because it is not possible to couple such fields to massless General Relativity in the same way. We show that this theory has the primary constraint necessary to eliminate the Boulware-Deser ghost, thus preserving the attractive properties of both the Galileons and ghost-free massive gravity.
215 - Ning Bao , Sean M. Carroll , 2017
We argue in a model-independent way that the Hilbert space of quantum gravity is locally finite-dimensional. In other words, the density operator describing the state corresponding to a small region of space, when such a notion makes sense, is define d on a finite-dimensional factor of a larger Hilbert space. Because quantum gravity potentially describes superpo- sitions of different geometries, it is crucial that we associate Hilbert-space factors with spatial regions only on individual decohered branches of the universal wave function. We discuss some implications of this claim, including the fact that quantum field theory cannot be a fundamental description of Nature.
229 - Michael Maziashvili 2008
Concerning the gravitational corrections to the running of gauge couplings two different results were reported. Some authors claim that gravitational correction at the one-loop level indicates an interesting effect of universal gravitational decreasi ng of gauge couplings, that is, gravitational correction works universally in the direction of asymptotic freedom no matter how the gauge coupling behaves without gravity, while others reject the presence of gravitational correction at the one-loop level at all. Being these calculations done in the framework of an effective field theory approach to general relativity, we wanted to draw attention to a recently discovered profound quantum-gravitational effect of space-time dimension running that inevitably affects the running of gauge couplings. The running of space-time dimension indicating gradual reduction of dimension as one gets into smaller scales acts on the coupling constants in the direction of asymptotic freedom and therefore in any case manifests the plausibility of this quantum-gravitational effect. Curiously enough, the results are also in perfect quantitative agreement with those of Robinson and Wilczek.
532 - Kouichi Nomura , Jiro Soda 2012
We study ghosts in multimetric gravity by combining the mini-superspace and the Hamiltonian constraint analysis. We first revisit bimetric gravity and explain why it is ghost-free. Then, we apply our method to trimetric gravity and clarify when the m odel contains a ghost. More precisely, we prove trimetric gravity generically contains a ghost. However, if we cut the interaction of a pair of metrics, trimetric gravity becomes ghost-free. We further extend the Hamiltonian analysis to general multimetric gravity and calculate the number of ghosts in various models. Thus, we find multimetric gravity with loop type interactions never becomes ghost-free.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا