ﻻ يوجد ملخص باللغة العربية
Machine learning techniques work best when the data used for training resembles the data used for evaluation. This holds true for learned single-image denoising algorithms, which are applied to real raw camera sensor readings but, due to practical constraints, are often trained on synthetic image data. Though it is understood that generalizing from synthetic to real data requires careful consideration of the noise properties of image sensors, the other aspects of a cameras image processing pipeline (gain, color correction, tone mapping, etc) are often overlooked, despite their significant effect on how raw measurements are transformed into finished images. To address this, we present a technique to unprocess images by inverting each step of an image processing pipeline, thereby allowing us to synthesize realistic raw sensor measurements from commonly available internet photos. We additionally model the relevant components of an image processing pipeline when evaluating our loss function, which allows training to be aware of all relevant photometric processing that will occur after denoising. By processing and unprocessing model outputs and training data in this way, we are able to train a simple convolutional neural network that has 14%-38% lower error rates and is 9x-18x faster than the previous state of the art on the Darmstadt Noise Dataset, and generalizes to sensors outside of that dataset as well.
Cameras currently allow access to two image states: (i) a minimally processed linear raw-RGB image state (i.e., raw sensor data) or (ii) a highly-processed nonlinear image state (e.g., sRGB). There are many computer vision tasks that work best with a
In this paper, we introduce a novel visual representation learning which relies on a handful of adaptively learned tokens, and which is applicable to both image and video understanding tasks. Instead of relying on hand-designed splitting strategies t
Fluorescence microscopy has enabled a dramatic development in modern biology. Due to its inherently weak signal, fluorescence microscopy is not only much noisier than photography, but also presented with Poisson-Gaussian noise where Poisson noise, or
In this paper, we propose a learning-based approach for denoising raw videos captured under low lighting conditions. We propose to do this by first explicitly aligning the neighboring frames to the current frame using a convolutional neural network (
In this paper, we present new data pre-processing and augmentation techniques for DNN-based raw image denoising. Compared with traditional RGB image denoising, performing this task on direct camera sensor readings presents new challenges such as how