ﻻ يوجد ملخص باللغة العربية
Larkin-Ovchinnikov superconducting state has spontaneous modulation of Cooper pair density, while Fulde-Ferrell state has a spontaneous modulation in the phase of the order parameter. We report that a quasi-two-dimensional Dirac metal, under certain conditions has principally different inhomogeneous superconducting states that by contrast have spontaneous modulation in a submanifold of a multiple-symmetries-breaking order parameter. The first state we find can be viewed as a nematic superconductor where the nematicity vector spontaneously breaks rotational and translational symmetries due to spatial modulation. The other demonstrated state is a chiral superconductor with spontaneously broken time-reversal and translational symmetries. It is characterized by an order parameter, which forms a lattice pattern of alternating chiralities.
To address the issues of superconducting and charge properties in high-T$_c$ cuprates, we perform a quantum Monte Carlo study of an extended three-band Emery model, which explicitly includes attractive interaction $V_{OO}$ between oxygen orbitals. In
Study of Fe based compounds have drawn much attention due to the discovery of superconductivity as well as many other exotic electronic properties. Here, we review some of our works in these materials carried out employing density functional theory a
Elucidating the microscopic origin of nematic order in iron-based superconducting materials is important because the interactions that drive nematic order may also mediate the Cooper pairing. Nematic order breaks fourfold rotational symmetry in the i
Strain is a powerful experimental tool to explore new electronic states and understand unconventional superconductivity. Here, we investigate the effect of uniaxial strain on the nematic and superconducting phase of single crystal FeSe using magnetot
The cuprate superconductors are characterized by numerous ordering tendencies, with the nematic order being the most distinct form of order. Here the intertwinement of the electronic nematicity with superconductivity in cuprate superconductors is stu