ﻻ يوجد ملخص باللغة العربية
This paper studies the delocalized regime of an ultrametric random operator whose independent entries have variances decaying in a suitable hierarchical metric on $mathbb{N}$. When the decay-rate of the off-diagonal variances is sufficiently slow, we prove that the spectral measures are uniformly $theta$-H{o}lder continuous for all $theta in (0,1)$. In finite volumes, we prove that the corresponding ultrametric random matrices have completely extended eigenfunctions and that the local eigenvalue statistics converge in the Wigner-Dyson-Mehta universality class.
We use trace class scattering theory to exclude the possibility of absolutely continuous spectrum in a large class of self-adjoint operators with an underlying hierarchical structure and provide applications to certain random hierarchical operators a
The present paper is devoted to new, improved bounds for the eigenfunctions of random operators in the localized regime. We prove that, in the localized regime with good probability, each eigenfunction is exponentially decaying outside a ball of a ce
We study the hierarchical analogue of power-law random band matrices, a symmetric ensemble of random matrices with independent entries whose variances decay exponentially in the metric induced by the tree topology on $mathbb{N}$. We map out the entir
We consider the Rosenzweig-Porter model $H = V + sqrt{T}, Phi$, where $V$ is a $N times N$ diagonal matrix, $Phi$ is drawn from the $N times N$ Gaussian Orthogonal Ensemble, and $N^{-1} ll T ll 1$. We prove that the eigenfunctions of $H$ are typicall
For one-dimensional random Schrodinger operators, the integrated density of states is known to be given in terms of the (averaged) rotation number of the Prufer phase dynamics. This paper develops a controlled perturbation theory for the rotation num