ﻻ يوجد ملخص باللغة العربية
We use trace class scattering theory to exclude the possibility of absolutely continuous spectrum in a large class of self-adjoint operators with an underlying hierarchical structure and provide applications to certain random hierarchical operators and matrices. We proceed to contrast the localizing effect of the hierarchical structure in the deterministic setting with previous results and conjectures in the random setting. Furthermore, we survey stronger localization statements truly exploiting the disorder for the hierarchical Anderson model and report recent results concerning the spectral statistics of the ultrametric random matrix ensemble.
This paper studies the delocalized regime of an ultrametric random operator whose independent entries have variances decaying in a suitable hierarchical metric on $mathbb{N}$. When the decay-rate of the off-diagonal variances is sufficiently slow, we
The present paper is devoted to new, improved bounds for the eigenfunctions of random operators in the localized regime. We prove that, in the localized regime with good probability, each eigenfunction is exponentially decaying outside a ball of a ce
The asymptotic expansion of the heat-kernel for small values of its argument has been studied in many different cases and has been applied to 1-loop calculations in Quantum Field Theory. In this thesis we consider this asymptotic behavior for certain
We apply Feshbach-Krein-Schur renormalization techniques in the hierarchical Anderson model to establish a criterion on the single-site distribution which ensures exponential dynamical localization as well as positive inverse participation ratios and
A new characterization of the singular packing subspaces of general bounded self-adjoint operators is presented, which is used to show that the set of operators whose spectral measures have upper packing dimension equal to one is a $G_delta$ (in suit