ﻻ يوجد ملخص باللغة العربية
This article is the rejoinder for the paper Probabilistic Integration: A Role in Statistical Computation? to appear in Statistical Science with discussion. We would first like to thank the reviewers and many of our colleagues who helped shape this paper, the editor for selecting our paper for discussion, and of course all of the discussants for their thoughtful, insightful and constructive comments. In this rejoinder, we respond to some of the points raised by the discussants and comment further on the fundamental questions underlying the paper: (i) Should Bayesian ideas be used in numerical analysis?, and (ii) If so, what role should such approaches have in statistical computation?
A research frontier has emerged in scientific computation, wherein numerical error is regarded as a source of epistemic uncertainty that can be modelled. This raises several statistical challenges, including the design of statistical methods that ena
This paper considers the problem of cardinality estimation in data stream applications. We present a statistical analysis of probabilistic counting algorithms, focusing on two techniques that use pseudo-random variates to form low-dimensional data sk
Archetypal analysis is an unsupervised learning method for exploratory data analysis. One major challenge that limits the applicability of archetypal analysis in practice is the inherent computational complexity of the existing algorithms. In this pa
This paper presents a statistical method of single-channel speech enhancement that uses a variational autoencoder (VAE) as a prior distribution on clean speech. A standard approach to speech enhancement is to train a deep neural network (DNN) to take
The stochastic partial differential equation approach to Gaussian processes (GPs) represents Matern GP priors in terms of $n$ finite element basis functions and Gaussian coefficients with sparse precision matrix. Such representations enhance the scal