ﻻ يوجد ملخص باللغة العربية
Clustering algorithms have been increasingly adopted in security applications to spot dangerous or illicit activities. However, they have not been originally devised to deal with deliberate attack attempts that may aim to subvert the clustering process itself. Whether clustering can be safely adopted in such settings remains thus questionable. In this work we propose a general framework that allows one to identify potential attacks against clustering algorithms, and to evaluate their impact, by making specific assumptions on the adversarys goal, knowledge of the attacked system, and capabilities of manipulating the input data. We show that an attacker may significantly poison the whole clustering process by adding a relatively small percentage of attack samples to the input data, and that some attack samples may be obfuscated to be hidden within some existing clusters. We present a case study on single-linkage hierarchical clustering, and report experiments on clustering of malware samples and handwritten digits.
Adversarial examples are perturbed inputs that are designed (from a deep learning networks (DLN) parameter gradients) to mislead the DLN during test time. Intuitively, constraining the dimensionality of inputs or parameters of a network reduces the s
Neural networks are vulnerable to small adversarial perturbations. Existing literature largely focused on understanding and mitigating the vulnerability of learned models. In this paper, we demonstrate an intriguing phenomenon about the most popular
In the classical multi-party computation setting, multiple parties jointly compute a function without revealing their own input data. We consider a variant of this problem, where the input data can be shared for machine learning training purposes, bu
Adversarial training, in which a network is trained on adversarial examples, is one of the few defenses against adversarial attacks that withstands strong attacks. Unfortunately, the high cost of generating strong adversarial examples makes standard
This paper introduces stochastic sparse adversarial attacks (SSAA), simple, fast and purely noise-based targeted and untargeted $L_0$ attacks of neural network classifiers (NNC). SSAA are devised by exploiting a simple small-time expansion idea widel