ﻻ يوجد ملخص باللغة العربية
Understanding the role of magnetic fields in star-forming regions is of fundamental importance. In the near future, the exceptional sensitivity of SKA will offer a unique opportunity to evaluate the magnetic field strength in molecular clouds and cloud cores through synchrotron emission observations. The most recent Voyager 1 data, together with Galactic synchrotron emission and Alpha Magnetic Spectrometer data, constrain the flux of interstellar cosmic-ray electrons between $approx3$ MeV and $approx832$ GeV, in particular in the energy range relevant for synchrotron emission in molecular cloud cores at SKA frequencies. Synchrotron radiation is entirely due to primary cosmic-ray electrons, the relativistic flux of secondary leptons being completely negligible. We explore the capability of SKA in detecting synchrotron emission in two starless molecular cloud cores in the southern hemisphere, B68 and FeSt 1-457, and we find that it will be possible to reach signal-to-noise ratios of the order of $2-23$ at the lowest frequencies observable by SKA ($60-218$ MHz) with one hour of integration.
We aim to reveal the physical properties and chemical composition of the cores in the California molecular cloud (CMC), so as to better understand the initial conditions of star formation. We made a high-resolution column density map (18.2) with Hers
We study the rotational properties of magnetized and self-gravitating molecular cloud cores formed in 2 very high resolution 3D molecular cloud simulations.The simulations have been performed using the code RAMSES at an effective resolution of 4096^3
We present molecular line imaging observations of three massive molecular outflow sources, G333.6-0.2, G333.1-0.4, and G332.8-0.5, all of which also show evidence for infall, within the G333 giant molecular cloud (GMC). All three are within a beam si
We present the results of a single-pointing survey of 207 dense cores embedded in Planck Galactic Cold Clumps distributed in five different environments ($lambda$ Orionis, Orion A, B, Galactic plane, and high latitudes) to identify dense cores on the
We present the first results of high-spectral resolution (0.023 km/s) N$_2$H$^+$ observations of dense gas dynamics at core scales (~0.01 pc) using the recently commissioned Argus instrument on the Green Bank Telescope (GBT). While the fitted linear