ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging binary stars by the cross-correlation technique

55   0   0.0 ( 0 )
 نشر من قبل Eric Aristidi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present in this paper a technique for imaging binary stars from speckle data. This technique is based upon the computation of the cross-correlation between the speckle frames and their square. This may be considered as a simple, easy to implement, complementary computation to the autocorrelation function of Labeyries technique for a rapid determination of the position angle of binary systems. Angular separation, absolute position angle and relative photometry of binary stars can be derived from this technique. We show an application to the bright double star zeta Sge observed at the 2m Telescope Bernard Lyot.

قيم البحث

اقرأ أيضاً

We recently proposed a new lucky imaging technique, the Power Spectrum Extended (PSE), adapted for image reconstruction of short-exposure astronomical images in case of weak turbulence or partial adaptive optics correction. In this communication we s how applications of this technique to observations of about 30 binary stars in H band with the 1m telescope of the Calern C2PU observatory. We show some images reconstructed at the diffraction limit of the telescope and provide measurements of relative astrometry and photometry of observed couples.
58 - C. Regulo , R. A. Garcia , 2016
Aims. We aim studying the use of cross-correlation techniques to infer the frequency shifts induced by changing magnetic fields in the p-mode frequencies and provide precise estimation of the error bars. Methods. This technique and the calculation of the associated errors is first tested and validated on the Sun where the p-mode magnetic behaviour is very well known. These validation tests are performed on 6000-day time series of Sun-as-a-star observations delivered by the SoHO spacecraft. Errors of the frequency shifts are quantified through Monte Carlo simulations. The same methodology is then applied to three solar-like oscillating stars: HD 49933, observed by CoRoT, as well as KIC 3733735 and KIC 7940546 observed by Kepler. Results. We first demonstrate the reliability of the error bars computed with the Monte Carlo simulations using the Sun. From the three analyzed stars we confirm the presence of a magnetic activity cycle with this methodology in HD 49933 and we unveil seismic signature of on going magnetic variations in KIC 3733735. Finally, the third star, KIC 7940546, seems to be in a quiet regime.
Accurate radial velocities ($v_{rm rad}$) of Cepheids are mandatory within the context of distance measurements via the Baade-Wesselink technique. The most common $v_{rm rad}$ derivation method consists in cross-correlating the observed spectrum with a binary template and measuring a velocity on the resulting profile. Yet for Cepheids, the spectral lines selected within the template as well as the way of fitting the cross-correlation function (CCF) have a significant impact on the measured $v_{rm rad}$. We detail the steps to compute consistent Cepheid CCFs and $v_{rm rad}$, and we characterise the impact of Cepheid spectral properties and $v_{rm rad}$ computation method on the resulting line profiles. We collected more than 3900 high-resolution spectra from seven different spectrographs of 64 classical Cepheids. These spectra were standardised through a single process on pre-defined wavelength ranges. We built six correlation templates selecting un-blended lines of different depths from a synthetic Cepheid spectrum, on three different wavelength ranges from 390 to 800 nm. Each spectrum was cross-correlated with these templates to build the corresponding CCFs. We derived a set of line profile observables as well as three different $v_{rm rad}$ measurements from each CCF. This study confirms that both the template wavelength range, its mean line depth and width, and the $v_{rm rad}$ computation method significantly impact the $v_{rm rad}$. Deriving more robust Cepheid $v_{rm rad}$ time series require to minimise the asymmetry of the line profile and its impact on the $v_{rm rad}$. Centroid $v_{rm rad}$, that exhibit slightly smaller amplitudes but significantly smaller scatter than Gaussian or biGaussian $v_{rm rad}$, should thus be favoured. Stronger lines are also less asymmetric and lead to more robust $v_{rm rad}$ than weaker lines.
The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the ionosphere is an important experimental concern as it reduces the pulse amplitude and subsequent chances of detection. We are continuing to investigate a new method to calibrate the dispersive effect of the ionosphere on lunar Cherenkov pulses via Faraday rotation measurements of the Moons polarised emission combined with geomagnetic field models. We also extend this work to include radio imaging of the Lunar surface, which provides information on the physical and chemical properties of the lunar surface that may affect experimental strategies for the lunar Cherenkov technique.
Hundreds of candidate hybrid pulsators of intermediate type A-F were revealed by the recent space missions. Hybrid pulsators allow to study the full stellar interiors, where p- and g-modes are simultaneously excited. The true hybrid stars must be ide ntified since other processes, due to stellar multiplicity or rotation, might explain the presence of (some) low frequencies observed in their periodograms. We measured the radial velocities of 50 candidate Delta Sct - Gamma Dor hybrid stars from the Kepler mission with the Hermes/Ace spectrographs over a span of months to years. We aim to derive the fraction of binary and multiple systems and to provide an independent and homogeneous determination of the atmospheric properties and vsini for all targets. The objective is to identify the physical cause of the low frequencies. We computed 1-D cross-correlation functions (CCFs) in order to find the best parameters in terms of the number of components, spectral type and vsini for each target. Radial velocities were measured from spectrum synthesis and by using a 2-D cross-correlation technique in the case of double- and triple-lined systems. Fundamental parameters were determined by fitting (composite) synthetic spectra to the normalised median spectra corrected for the appropriate Doppler shifts. We report on the analysis of 478 high-resolution Hermes and 41 Ace spectra of A/F-type candidate hybrid pulsators from the Kepler field. We determined their radial velocities, projected rotational velocities, atmospheric properties and classified our targets based on the shape of the CCFs and the temporal behaviour of the radial velocities. We derived orbital solutions for seven new systems. Three long-period preliminary orbital solutions are confirmed by a photometric time-delay analysis. Finally, we determined a global multiplicity fraction of 27% in our sample of candidate hybrid stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا