ﻻ يوجد ملخص باللغة العربية
Isochronous mass spectrometry was applied to measure isomeric yield ratios of fragmentation reaction products. This approach is complementary to conventional gamma-ray spectroscopy in particular for measuring yield ratios for long-lived isomeric states. Isomeric yield ratios for the high-spin I = 19/2 states in the mirror nuclei 53Fe and 53Co are measured to study angular momentum population following the projectile fragmentation of 78Kr at energies of 480A MeV on a beryllium target. The 19/2 state isomeric ratios of 53Fe produced from different projectiles in the literature have also been extracted as a function of mass number difference between projectile and fragment (mass loss). The results are compared to ABRABLA07 model calculations. The isomeric ratios of 53Fe produced using different projectiles suggest that the theory underestimates not only the previously reported dependence on the spin but also the dependence on the mass loss.
Atomic masses of seven $T_z=-1$, $fp$-shell nuclei from $^{44}$V to $^{56}$Cu and two low-lying isomers, $^{44m}$V ($J^pi=6^+$) and $^{52m}$Co ($J^pi=2^+$), have been measured with relative precisions of $1-4times 10^{-7}$ with Isochronous Mass Spect
Lifetime measurements of b -decaying highly charged ions have been performed in the storage ring CSRe by applying the isochronous Schottky mass spectrometry. The fully ionized 49Cr and 53Fe ions were produced in projectile fragmentation of 58Ni prima
Isochronous Mass Spectrometry (IMS) in heavy-ion storage rings is an excellent experimental method for precision mass measurements of exotic nuclei. In the IMS, the storage ring is tuned in a special isochronous ion-optical mode. Thus, the mass-over-
Fragmentation reactions with intermediate-energy heavy-ion beams exhibit a wide range of reaction mechanisms, ranging from direct reactions to statistical processes. We examine this transition by measuring the relative population of excited states in
The N/Z dependence of projectile fragmentation at relativistic energies has been studied in a recent experiment at the GSI laboratory with the ALADiN forward spectrometer coupled to the LAND neutron detector. Besides a primary beam of 124Sn, also sec