ترغب بنشر مسار تعليمي؟ اضغط هنا

First application of combined isochronous and Schottky mass spectrometry: Half-lives of fully ionized 49Cr24+ and 53Fe26+ atoms

207   0   0.0 ( 0 )
 نشر من قبل Xiaolin Tu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lifetime measurements of b -decaying highly charged ions have been performed in the storage ring CSRe by applying the isochronous Schottky mass spectrometry. The fully ionized 49Cr and 53Fe ions were produced in projectile fragmentation of 58Ni primary beam and were stored in the CSRe tuned into the isochronous ion-optical mode. The new resonant Schottky detector was applied to monitor the intensities of stored uncooled 49Cr24+ and 53Fe26+ ions. The extracted half-lives T1/2(49Cr24+) = 44.0(27) min and T1/2(53Fe26+) = 8.47(19) min are in excellent agreement with the literature half-life values corrected for the disabled electron capture branchings. This is an important proof-of-principle step towards realizing the simultaneous mass and lifetime measurements on exotic nuclei at the future storage ring facilities.

قيم البحث

اقرأ أيضاً

Isochronous mass spectrometry was applied to measure isomeric yield ratios of fragmentation reaction products. This approach is complementary to conventional gamma-ray spectroscopy in particular for measuring yield ratios for long-lived isomeric stat es. Isomeric yield ratios for the high-spin I = 19/2 states in the mirror nuclei 53Fe and 53Co are measured to study angular momentum population following the projectile fragmentation of 78Kr at energies of 480A MeV on a beryllium target. The 19/2 state isomeric ratios of 53Fe produced from different projectiles in the literature have also been extracted as a function of mass number difference between projectile and fragment (mass loss). The results are compared to ABRABLA07 model calculations. The isomeric ratios of 53Fe produced using different projectiles suggest that the theory underestimates not only the previously reported dependence on the spin but also the dependence on the mass loss.
69 - P. Shuai , H. S. Xu , X. L. Tu 2014
Revolution frequency measurements of individual ions in storage rings require sophisticated timing detectors. One of common approaches for such detectors is the detection of secondary electrons released from a thin foil due to penetration of the stor ed ions. A new method based on the analysis of intensities of secondary electrons was developed which enables determination of the charge of each ion simultaneously with the measurement of its revolution frequency. Although the mass-over-charge ratios of $^{51}$Co$^{27+}$ and $^{34}$Ar$^{18+}$ ions are almost identical, and therefore, the ions can not be resolved in a storage ring, by applying the new method the mass excess of the short-lived $^{51}$Co is determined for the first time to be ME($^{51}$Co)=-27342(48) keV. Shell-model calculations in the $fp$-shell nuclei compared to the new data indicate the need to include isospin-nonconserving forces.
The FRS-ESR facilities at GSI provide unique conditions for precision measurements with stored exotic nuclei over a large range in the chart of nuclides. In the present experiment the exotic nuclei were produced via fragmentation of $^{152}$Sm projec tiles in a thick beryllium target at 500-600 MeV/u, separated in-flight with the fragment separator FRS, and injected into the storage-cooler ring ESR. Mass and lifetime measurements have been performed with bare and few-electron ions. The experiment and first results will be presented in this contribution.
Currently the half-life of 195Os is listed as unknown in most databases because the value of the only available measurement had been reassigned. We argue that the original assignment is correct and re-evaluate the half-life of 195Os to be 6.5(11)min, consistent with the original measurement. We also suggest to reassign the half-life of 195Ir to 2.29(17)h.
103 - J. H. Liu , X. Xu , P. Zhang 2019
Isochronous Mass Spectrometry (IMS) in heavy-ion storage rings is an excellent experimental method for precision mass measurements of exotic nuclei. In the IMS, the storage ring is tuned in a special isochronous ion-optical mode. Thus, the mass-over- charge ratios of the stored ions are directly reflected by their respective revolution times in first order. However, the inevitable momentum spread of secondary ions increases the peak widths in the measured spectra and consequently limits the achieved mass precision. In order to achieve a higher mass resolving power, the ring aperture was reduced to 60 mm by applying a mechanical slit system at the dispersive straight section. The momentum acceptance was reduced as well as better isochronous conditions were achieved. The results showed a significant improvement of the mass resolving power reaching $5.2 times 10^{5}$, though at the cost of about 40% ion loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا