ترغب بنشر مسار تعليمي؟ اضغط هنا

Strength in Numbers: Trading-off Robustness and Computation via Adversarially-Trained Ensembles

382   0   0.0 ( 0 )
 نشر من قبل Edward Grefenstette
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While deep learning has led to remarkable results on a number of challenging problems, researchers have discovered a vulnerability of neural networks in adversarial settings, where small but carefully chosen perturbations to the input can make the models produce extremely inaccurate outputs. This makes these models particularly unsuitable for safety-critical application domains (e.g. self-driving cars) where robustness is extremely important. Recent work has shown that augmenting training with adversarially generated data provides some degree of robustness against test-time attacks. In this paper we investigate how this approach scales as we increase the computational budget given to the defender. We show that increasing the number of parameters in adversarially-trained models increases their robustness, and in particular that ensembling smaller models while adversarially training the entire ensemble as a single model is a more efficient way of spending said budget than simply using a larger single model. Crucially, we show that it is the adversarial training of the ensemble, rather than the ensembling of adversarially trained models, which provides robustness.

قيم البحث

اقرأ أيضاً

Adversarial examples are crafted with imperceptible perturbations with the intent to fool neural networks. Against such attacks, adversarial training and its variants stand as the strongest defense to date. Previous studies have pointed out that robu st models that have undergone adversarial training tend to produce more salient and interpretable Jacobian matrices than their non-robust counterparts. A natural question is whether a model trained with an objective to produce salient Jacobian can result in better robustness. This paper answers this question with affirmative empirical results. We propose Jacobian Adversarially Regularized Networks (JARN) as a method to optimize the saliency of a classifiers Jacobian by adversarially regularizing the models Jacobian to resemble natural training images. Image classifiers trained with JARN show improved robust accuracy compared to standard models on the MNIST, SVHN and CIFAR-10 datasets, uncovering a new angle to boost robustness without using adversarial training examples.
125 - Desheng Wang 2021
Convolutional neural networks (CNNs) have achieved beyond human-level accuracy in the image classification task and are widely deployed in real-world environments. However, CNNs show vulnerability to adversarial perturbations that are well-designed n oises aiming to mislead the classification models. In order to defend against the adversarial perturbations, adversarially trained GAN (ATGAN) is proposed to improve the adversarial robustness generalization of the state-of-the-art CNNs trained by adversarial training. ATGAN incorporates adversarial training into standard GAN training procedure to remove obfuscated gradients which can lead to a false sense in defending against the adversarial perturbations and are commonly observed in existing GANs-based adversarial defense methods. Moreover, ATGAN adopts the image-to-image generator as data augmentation to increase the sample complexity needed for adversarial robustness generalization in adversarial training. Experimental results in MNIST SVHN and CIFAR-10 datasets show that the proposed method doesnt rely on obfuscated gradients and achieves better global adversarial robustness generalization performance than the adversarially trained state-of-the-art CNNs.
While deep neural networks have achieved remarkable success in various computer vision tasks, they often fail to generalize to new domains and subtle variations of input images. Several defenses have been proposed to improve the robustness against th ese variations. However, current defenses can only withstand the specific attack used in training, and the models often remain vulnerable to other input variations. Moreover, these methods often degrade performance of the model on clean images and do not generalize to out-of-domain samples. In this paper we present Generative Adversarial Training, an approach to simultaneously improve the models generalization to the test set and out-of-domain samples as well as its robustness to unseen adversarial attacks. Instead of altering a low-level pre-defined aspect of images, we generate a spectrum of low-level, mid-level and high-level changes using generative models with a disentangled latent space. Adversarial training with these examples enable the model to withstand a wide range of attacks by observing a variety of input alterations during training. We show that our approach not only improves performance of the model on clean images and out-of-domain samples but also makes it robust against unforeseen attacks and outperforms prior work. We validate effectiveness of our method by demonstrating results on various tasks such as classification, segmentation and object detection.
Neural networks are part of many contemporary NLP systems, yet their empirical successes come at the price of vulnerability to adversarial attacks. Previous work has used adversarial training and data augmentation to partially mitigate such brittlene ss, but these are unlikely to find worst-case adversaries due to the complexity of the search space arising from discrete text perturbations. In this work, we approach the problem from the opposite direction: to formally verify a systems robustness against a predefined class of adversarial attacks. We study text classification under synonym replacements or character flip perturbations. We propose modeling these input perturbations as a simplex and then using Interval Bound Propagation -- a formal model verification method. We modify the conventional log-likelihood training objective to train models that can be efficiently verified, which would otherwise come with exponential search complexity. The resulting models show only little difference in terms of nominal accuracy, but have much improved verified accuracy under perturbations and come with an efficiently computable formal guarantee on worst case adversaries.
Deep neural networks are known to be vulnerable to adversarial attacks. Current methods of defense from such attacks are based on either implicit or explicit regularization, e.g., adversarial training. Randomized smoothing, the averaging of the class ifier outputs over a random distribution centered in the sample, has been shown to guarantee the performance of a classifier subject to bounded perturbations of the input. In this work, we study the application of randomized smoothing as a way to improve performance on unperturbed data as well as to increase robustness to adversarial attacks. The proposed technique can be applied on top of any existing adversarial defense, but works particularly well with the randomized approaches. We examine its performance on common white-box (PGD) and black-box (transfer and NAttack) attacks on CIFAR-10 and CIFAR-100, substantially outperforming previous art for most scenarios and comparable on others. For example, we achieve 60.4% accuracy under a PGD attack on CIFAR-10 using ResNet-20, outperforming previous art by 11.7%. Since our method is based on sampling, it lends itself well for trading-off between the model inference complexity and its performance. A reference implementation of the proposed techniques is provided at https://github.com/yanemcovsky/SIAM

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا