ﻻ يوجد ملخص باللغة العربية
Unconventional superconductivity in molecular conductors is observed at the border of metal-insulator transitions in correlated electrons under the influence of geometrical frustration. The symmetry as well as the mechanism of the superconductivity (SC) is highly controversial. To address this issue, we theoretically explore the electronic properties of carrier-doped molecular Mott system $kappa$-(BEDT-TTF)$_2$X. We find significant electron-hole doping asymmetry in the phase diagram where antiferromagnetic (AF) spin order, different patterns of charge order, and SC compete with each other. Hole-doping stabilizes AF phase and promotes SC with $d_{xy}$-wave symmetry, which has similarities with high-$T_c$ cuprates. In contrast, in the electron-doped side, geometrical frustration destabilizes the AF phase and the enhanced charge correlation induces another SC with extended-$s$+$d_{x^2-y^2}$-wave symmetry. Our results disclose the mechanism of each phase appearing in filling-control molecular Mott systems, and elucidate how physics of different strongly-correlated electrons are connected, namely, molecular conductors and high-$T_c$ cuprates.
We generalize the theory of Cooper pairing by spin excitations in the metallic antiferromagnetic state to include situations with electron and/or hole pockets. We show that Cooper pairing arises from transverse spin waves and from gapped longitudinal
High-temperature superconductivity (HTSC) mysteriously emerges upon doping holes or electrons into insulating copper oxides with antiferromagnetic (AFM) order. It has been thought that the large energy scale of magnetic excitations, compared to phono
We show, from first-principles calculations, that the hole-doped side of FeAs-based compounds is different from its electron-doped counterparts. The electron side is characterized as Fermi surface nesting, and SDW-to-NM quantum critical point (QCP) i
We discuss evolution of the Fermi surface (FS) topology with doping in electron doped cuprates within the framework of a one-band Hubbard Hamiltonian, where antiferromagnetism and superconductivity are assumed to coexist in a uniform phase. In the li
The discovery of EuFeAs2, currently the only charge-neutral parent phase of the 112-type iron-pnictide system, provides a new platform for the study of elemental doping effects on magnetism and superconductivity (SC). In this study, a series of polyc