ﻻ يوجد ملخص باللغة العربية
The collapse of supermassive primordial stars in hot, atomically-cooled halos may have given birth to the first quasars at $z sim$ 15 - 20. Recent numerical simulations of these rapidly accreting stars reveal that they are cool, red hypergiants shrouded by dense envelopes of pristine atomically-cooled gas at 6,000 - 8,000 K, with luminosities $L$ $gtrsim$ 10$^{10}$ L$_{odot}$. Could such luminous but cool objects be detected as the first stage of quasar formation in future near infrared (NIR) surveys? We have now calculated the spectra of supermassive primordial stars in their birth envelopes with the Cloudy code. We find that some of these stars will be visible to JWST at $z lesssim$ 20 and that with modest gravitational lensing Euclid and WFIRST could detect them out to $z sim$ 10 - 12. Rather than obscuring the star, its accretion envelope enhances its visibility in the NIR today by reprocessing its short-wavelength flux into photons that are just redward of the Lyman limit in the rest frame of the star.
Primordial supermassive stars (SMSs) formed in atomic-cooling halos at z ~ 15 - 20 are leading candidates for the seeds of the first quasars. Past numerical studies of the evolution of SMSs have typically assumed constant accretion rates rather than
Supermassive primordial stars in hot, atomically-cooling haloes at $z sim$ 15 - 20 may have given birth to the first quasars in the universe. Most simulations of these rapidly accreting stars suggest that they are red, cool hypergiants, but more rece
Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z~6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretio
The formation of supermassive stars (SMSs) via rapid mass accretion and their direct collapse into black holes (BHs) is a promising pathway for sowing seeds of supermassive BHs in the early universe. We calculate the evolution of rapidly accreting SM
Many cosmological studies predict that early supermassive black holes (SMBHs) can only form in the most massive dark matter halos embedded within large scale structures marked by galaxy over-densities that may extend up to 10 physical Mpc. This scena