ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent Advances in Open Set Recognition: A Survey

264   0   0.0 ( 0 )
 نشر من قبل Chuanxing Geng
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In real-world recognition/classification tasks, limited by various objective factors, it is usually difficult to collect training samples to exhaust all classes when training a recognizer or classifier. A more realistic scenario is open set recognition (OSR), where incomplete knowledge of the world exists at training time, and unknown classes can be submitted to an algorithm during testing, requiring the classifiers to not only accurately classify the seen classes, but also effectively deal with the unseen ones. This paper provides a comprehensive survey of existing open set recognition techniques covering various aspects ranging from related definitions, representations of models, datasets, evaluation criteria, and algorithm comparisons. Furthermore, we briefly analyze the relationships between OSR and its related tasks including zero-shot, one-shot (few-shot) recognition/learning techniques, classification with reject option, and so forth. Additionally, we also overview the open world recognition which can be seen as a natural extension of OSR. Importantly, we highlight the limitations of existing approaches and point out some promising subsequent research directions in this field.

قيم البحث

اقرأ أيضاً

In open set recognition (OSR), almost all existing methods are designed specially for recognizing individual instances, even these instances are collectively coming in batch. Recognizers in decision either reject or categorize them to some known clas s using empirically-set threshold. Thus the decision threshold plays a key role. However, the selection for it usually depends on the knowledge of known classes, inevitably incurring risks due to lacking available information from unknown classes. On the other hand, a more realistic OSR system should NOT just rest on a reject decision but should go further, especially for discovering the hidden unknown classes among the reject instances, whereas existing OSR methods do not pay special attention. In this paper, we introduce a novel collective/batch decision strategy with an aim to extend existing OSR for new class discovery while considering correlations among the testing instances. Specifically, a collective decision-based OSR framework (CD-OSR) is proposed by slightly modifying the Hierarchical Dirichlet process (HDP). Thanks to HDP, our CD-OSR does not need to define the decision threshold and can implement the open set recognition and new class discovery simultaneously. Finally, extensive experiments on benchmark datasets indicate the validity of CD-OSR.
169 - Fengxiang He , Dacheng Tao 2020
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This pape r reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.
The past decade has seen an explosion in the amount of digital information stored in electronic health records (EHR). While primarily designed for archiving patient clinical information and administrative healthcare tasks, many researchers have found secondary use of these records for various clinical informatics tasks. Over the same period, the machine learning community has seen widespread advances in deep learning techniques, which also have been successfully applied to the vast amount of EHR data. In this paper, we review these deep EHR systems, examining architectures, technical aspects, and clinical applications. We also identify shortcomings of current techniques and discuss avenues of future research for EHR-based deep learning.
Data-driven paradigms are well-known and salient demands of future wireless communication. Empowered by big data and machine learning, next-generation data-driven communication systems will be intelligent with the characteristics of expressiveness, s calability, interpretability, and especially uncertainty modeling, which can confidently involve diversified latent demands and personalized services in the foreseeable future. In this paper, we review a promising family of nonparametric Bayesian machine learning methods, i.e., Gaussian processes (GPs), and their applications in wireless communication. Since GPs achieve the expressive and interpretable learning ability with uncertainty, it is particularly suitable for wireless communication. Moreover, it provides a natural framework for collaborating data and empirical models (DEM). Specifically, we first envision three-level motivations of data-driven wireless communication using GPs. Then, we present the background of the GPs in terms of covariance structure and model inference. The expressiveness of the GP model using various interpretable kernel designs is surveyed, namely, stationary, non-stationary, deep, and multi-task kernels. Furthermore, we review the distributed GPs with promising scalability, which is suitable for applications in wireless networks with a large number of distributed edge devices. Finally, we list representative solutions and promising techniques that adopt GPs in wireless communication systems.
Federated learning plays an important role in the process of smart cities. With the development of big data and artificial intelligence, there is a problem of data privacy protection in this process. Federated learning is capable of solving this prob lem. This paper starts with the current developments of federated learning and its applications in various fields. We conduct a comprehensive investigation. This paper summarize the latest research on the application of federated learning in various fields of smart cities. In-depth understanding of the current development of federated learning from the Internet of Things, transportation, communications, finance, medical and other fields. Before that, we introduce the background, definition and key technologies of federated learning. Further more, we review the key technologies and the latest results. Finally, we discuss the future applications and research directions of federated learning in smart cities.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا