ﻻ يوجد ملخص باللغة العربية
The Square Kilometre Array (SKA) will be both the largest radio telescope ever constructed and the largest Big Data project in the known Universe. The first phase of the project will generate on the order of 5 zettabytes of data per year. A critical task for the SKA will be its ability to process data for science, which will need to be conducted by science pipelines. Together with polarization data from the LOFAR Multifrequency Snapshot Sky Survey (MSSS), we have been developing a realistic SKA-like science pipeline that can handle the large data volumes generated by LOFAR at 150 MHz. The pipeline uses task-based parallelism to image, detect sources, and perform Faraday Tomography across the entire LOFAR sky. The project thereby provides a unique opportunity to contribute to the technological development of the SKA telescope, while simultaneously enabling cutting-edge scientific results. In this paper, we provide an update on current efforts to develop a science pipeline that can enable tight constraints on the magnetised large-scale structure of the Universe.
The Square Kilometre Array will revolutionize pulsar studies with its wide field-of-view, wide-band observation and high sensitivity, increasing the number of observable pulsars by more than an order of magnitude. Pulsars are of interest not only for
As the largest radio telescope in the world, the Square Kilometre Array (SKA) will lead the next generation of radio astronomy. The feats of engineering required to construct the telescope array will be matched only by the techniques developed to exp
The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation,
We review the current status of the Square Kilometre Array (SKA) by outlining the science drivers for its Phase-1 (SKA1) and setting out the timeline for the key decisions and milestones on the way to the planned start of its construction in 2016. We
The Square Kilometre Array (SKA) will be a formidable instrument for the detailed study of neutral hydrogen (HI) in external galaxies and in our own Galaxy and Local Group. The sensitivity of the SKA, its wide receiver bands, and the relative freedom