ترغب بنشر مسار تعليمي؟ اضغط هنا

HI Science with the Square Kilometre Array

152   0   0.0 ( 0 )
 نشر من قبل Lister Staveley-Smith
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Square Kilometre Array (SKA) will be a formidable instrument for the detailed study of neutral hydrogen (HI) in external galaxies and in our own Galaxy and Local Group. The sensitivity of the SKA, its wide receiver bands, and the relative freedom from radio frequency interference at the SKA sites will allow the imaging of substantial number of high-redshift galaxies in HI for the first time. It will also allow imaging of galaxies throughout the Local Volume at resolutions of <100 pc and detailed investigations of galaxy disks and the transition between disks, halos and the intergalactic medium (IGM) in the Milky Way and external galaxies. Together with deep optical and millimetre/sub-mm imaging, this will have a profound effect on our understanding of the formation, growth and subsequent evolution of galaxies in different environments. This paper provides an introductory text to a series of nine science papers describing the impact of the SKA in the field of HI and galaxy evolution. We propose a nested set of surveys with phase 1 of the SKA which will help tackle much of the exciting science described. Longer commensal surveys are discussed, including an ultra-deep survey which should permit the detection of galaxies at z=2, when the Universe was a quarter of its current age. The full SKA will allow more detailed imaging of even more distant galaxies, and allow cosmological and evolutionary parameters to be measured with exquisite precision.



قيم البحث

اقرأ أيضاً

The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale structure, and Dark Matter annihilation. Preparations for the SKA are swiftly continuing worldwide, and the community is making tremendous observational progress in the field of cosmic magnetism using data from a powerful international suite of SKA pathfinder and precursor telescopes. In this contribution, we revisit community plans for magnetism research using the SKA, in the light of these recent rapid developments. We focus in particular on the impact that new radio telescope instrumentation is generating, thus advancing our understanding of key SKA magnetism science areas, as well as the new techniques that are required for processing and interpreting the data. We discuss these recent developments in the context of the ultimate scientific goals for the SKA era.
The Square Kilometre Array (SKA) will be both the largest radio telescope ever constructed and the largest Big Data project in the known Universe. The first phase of the project will generate on the order of 5 zettabytes of data per year. A critical task for the SKA will be its ability to process data for science, which will need to be conducted by science pipelines. Together with polarization data from the LOFAR Multifrequency Snapshot Sky Survey (MSSS), we have been developing a realistic SKA-like science pipeline that can handle the large data volumes generated by LOFAR at 150 MHz. The pipeline uses task-based parallelism to image, detect sources, and perform Faraday Tomography across the entire LOFAR sky. The project thereby provides a unique opportunity to contribute to the technological development of the SKA telescope, while simultaneously enabling cutting-edge scientific results. In this paper, we provide an update on current efforts to develop a science pipeline that can enable tight constraints on the magnetised large-scale structure of the Universe.
The Square Kilometre Array will revolutionize pulsar studies with its wide field-of-view, wide-band observation and high sensitivity, increasing the number of observable pulsars by more than an order of magnitude. Pulsars are of interest not only for the study of neutron stars themselves but for their usage as tools for probing fundamental physics such as general relativity, gravitational waves and nuclear interaction. In this article, we summarize the activity and interests of SKA-Japan Pulsar Science Working Group, focusing on an investigation of modified gravity theory with the supermassive black hole in the Galactic Centre, gravitational-wave detection from cosmic strings and binary supermassive black holes, a study of the physical state of plasma close to pulsars using giant radio pulses and determination of magnetic field structure of Galaxy with pulsar pairs.
[ABRIDGED VERSION] The future of cm and m-wave astronomy lies with the Square Kilometre Array (SKA), a telescope under development by a consortium of 17 countries. The SKA will be 50 times more sensitive than any existing radio facility. A majority o f the key science for the SKA will be addressed through large-area imaging of the Universe at frequencies from 300 MHz to a few GHz. The Australian SKA Pathfinder (ASKAP) is aimed squarely in this frequency range, and achieves instantaneous wide-area imaging through the development and deployment of phase-array feed systems on parabolic reflectors. This large field-of-view makes ASKAP an unprecedented synoptic telescope poised to achieve substantial advances in SKA key science. The central core of ASKAP will be located at the Murchison Radio Observatory in inland Western Australia, one of the most radio-quiet locations on the Earth and one of the sites selected by the international community as a potential location for the SKA. Following an introductory description of ASKAP, this document contains 7 chapters describing specific science programmes for ASKAP. The combination of location, technological innovation and scientific program will ensure that ASKAP will be a world-leading radio astronomy facility, closely aligned with the scientific and technical direction of the SKA. A brief summary chapter emphasizes the point, and considers discovery space.
We review the current status of the Square Kilometre Array (SKA) by outlining the science drivers for its Phase-1 (SKA1) and setting out the timeline for the key decisions and milestones on the way to the planned start of its construction in 2016. We explain how Phase-2 SKA (SKA2) will transform the research scope of the SKA infrastructure, placing it amongst the great astronomical observatories and survey instruments of the future, and opening up new areas of discovery, many beyond the confines of conventional astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا