ﻻ يوجد ملخص باللغة العربية
We consider how recent experimental progress on deterministic solid state spin-photon interfaces enable the construction of a number of key elements of quantum networks. After reviewing some of the recent experimental achievements, we discuss their integration into Bell state analyzers, quantum non-demolition detection, and photonic cluster state generation. Finally, we outline how these elements can be used for long-distance entanglement generation and quantum key distribution in a quantum network.
We propose a novel one-way quantum repeater architecture based on photonic tree-cluster states. Encoding a qubit in a photonic tree-cluster protects the information from transmission loss and enables long-range quantum communication through a chain o
Semiconductor quantum dots are promising constituents for future quantum communication. Although deterministic, fast, efficient, coherent, and pure emission of entangled photons has been realized, implementing a practical quantum network remains outs
We introduce a method for high-fidelity quantum state transduction between a superconducting microwave qubit and the ground state spin system of a solid-state artificial atom, mediated via an acoustic bus connected by piezoelectric transducers. Appli
A single photon source is realized with a cold atomic ensemble ($^{87}$Rb atoms). In the experiment, single photons, which is initially stored in an atomic quantum memory generated by Raman scattering of a laser pulse, can be emitted deterministicall
We introduce a scheme to perform quantum-information processing that is based on a hybrid spin-photon qubit encoding. The proposed qubits consist of spin-ensembles coherently coupled to microwave photons in coplanar waveguide resonators. The quantum