ترغب بنشر مسار تعليمي؟ اضغط هنا

A Deterministic and Storable Single-Photon Source Based on Quantum Memory

229   0   0.0 ( 0 )
 نشر من قبل Zhen-Sheng Yuan
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A single photon source is realized with a cold atomic ensemble ($^{87}$Rb atoms). In the experiment, single photons, which is initially stored in an atomic quantum memory generated by Raman scattering of a laser pulse, can be emitted deterministically at a time-delay in control. It is shown that production rate of single photons can be enhanced by a feedback circuit considerably while the single-photon quality is conserved. Thus our present single-photon source is well suitable for future large-scale realization of quantum communication and linear optical quantum computation.

قيم البحث

اقرأ أيضاً

81 - Ravitej Uppu 2020
A deterministic source of coherent single photons is an enabling device of quantum-information processing for quantum simulators, and ultimately a full-fledged quantum internet. Quantum dots (QDs) in nanophotonic structures have been employed as exce llent sources of single photons, and planar waveguides are well suited for scaling up to multiple photons and emitters exploring near-unity photon-emitter coupling and advanced active on-chip functionalities. An ideal single-photon source requires suppressing noise and decoherence, which notably has been demonstrated in electrically-contacted heterostructures. It remains a challenge to implement deterministic resonant excitation of the QD required for generating coherent single photons, since residual light from the excitation laser should be suppressed without compromising source efficiency and scalability. Here, we present the design and realization of a novel planar nanophotonic device that enables deterministic pulsed resonant excitation of QDs through the waveguide. Through nanostructure engineering, the excitation light and collected photons are guided in two orthogonal waveguide modes enabling deterministic operation. We demonstrate a coherent single-photon source that simultaneously achieves high-purity ($g^{(2)}(0)$ = 0.020 $pm$ 0.005), high-indistinguishability ($V$ = 96 $pm$ 2 %), and $>$80 % coupling efficiency into the waveguide. The novel `plug-and-play coherent single-photon source could be operated unmanned for several days and will find immediate applications, e.g., for constructing heralded multi-photon entanglement sources for photonic quantum computing or sensing.
Semiconductor quantum dots in cavities are promising single-photon sources. Here, we present a path to deterministic operation, by harnessing the intrinsic linear dipole in a neutral quantum dot via phonon-assisted excitation. This enables emission o f fully polarized single photons, with a measured degree of linear polarization up to 0.994 $pm$ 0.007, and high population inversion -- 85% as high as resonant excitation. We demonstrate a single-photon source with a polarized first lens brightness of 0.51 $pm $ 0.01, a single-photon purity of 0.939 $pm$ 0.001 and single-photon indistinguishability of 0.915 $pm$ 0.003.
153 - JM Geremia 2006
We present a deterministic approach based on continuous measurement and real-time quantum feedback control to prepare arbitrary photon number states of a cavity mode. The procedure passively monitors the number state actually achieved in each feedbac k stabilized measurement trajectory, thus providing a nondestructively verifiable photon source. The feasibility of a possible cavity QED implementation in the many-atom good-cavity coupling regime is analyzed.
We propose a single-atom, cavity quantum electrodynamics system, compatible with recently demonstrated, fiber-integrated micro- and nano-cavity setups, for the on-demand production of optical number-state, $0N$-state, and binomial-code-state pulses. The scheme makes use of Raman transitions within an entire atomic ground-state hyperfine level and operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting. This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
In this paper, we describe a robust quantum cryptography scheme with a heralded single photon source based on the decoy-state method, which has been shown by numerical simulations to be advantageous compared with many other practical schemes not only with respect to the secure key generation rate but also to secure transmission distance. We have experimentally tested this scheme, and the results support the conclusions from numerical simulations well. Although there still exist many deficiencies in our present systems, its still sufficient to demonstrate the advantages of the scheme. Besides, even when cost and technological feasibility are taken into account, our scheme is still quite promising in the implementation of tomorrows quantum cryptography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا