ﻻ يوجد ملخص باللغة العربية
High-entropy materials have attracted considerable interest due to the combination of useful properties and promising applications. Predicting their formation remains the major hindrance to the discovery of new systems. Here we propose a descriptor - entropy forming ability - for addressing synthesizability from first principles. The formalism, based on the energy distribution spectrum of randomized calculations, captures the accessibility of equally-sampled states near the ground state and quantifies configurational disorder capable of stabilizing high-entropy homogeneous phases. The methodology is applied to disordered refractory 5-metal carbides - promising candidates for high-hardness applications. The descriptor correctly predicts the ease with which compositions can be experimentally synthesized as rock-salt high-entropy homogeneous phases, validating the ansatz, and in some cases, going beyond intuition. Several of these materials exhibit hardness up to 50% higher than rule of mixtures estimations. The entropy descriptor method has the potential to accelerate the search for high-entropy systems by rationally combining first principles with experimental synthesis and characterization.
Available information concerning the elastic moduli of refractory carbides at temperatures (T) of relevance for practical applications is sparse and/or inconsistent. We carry out ab initio molecular dynamics (AIMD) simulations at T = 300, 600, 900, a
High-purity and superfine high-entropy metal diboride powders, namely (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2, were successfully synthesized via a facile borothermal reduction method at 1973 K for the first time. The as-synthesized powders with an average part
The lattice dynamics for NiCo, NiFe, NiFeCo, NiFeCoCr, and NiFeCoCrMn medium to high entropy alloy have been investigated using the DFT calculation. The phonon dispersions along three different symmetry directions are calculated by the weighted dynam
For the first time, a group of CaB6-typed cubic rare earth high-entropy hexaborides have been successfully fabricated into dense bulk pellets (>98.5% in relative densities). The specimens are prepared from elemental precursors via in-situ metal-boron
High-entropy nanomaterials have been arousing considerable interest in recent years due to their huge composition space, unique microstructure, and adjustable properties. Previous studies focused mainly on high-entropy nanoparticles, while other high