ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient keyword spotting using dilated convolutions and gating

305   0   0.0 ( 0 )
 نشر من قبل Alice Coucke
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the application of end-to-end stateless temporal modeling to small-footprint keyword spotting as opposed to recurrent networks that model long-term temporal dependencies using internal states. We propose a model inspired by the recent success of dilated convolutions in sequence modeling applications, allowing to train deeper architectures in resource-constrained configurations. Gated activations and residual connections are also added, following a similar configuration to WaveNet. In addition, we apply a custom target labeling that back-propagates loss from specific frames of interest, therefore yielding higher accuracy and only requiring to detect the end of the keyword. Our experimental results show that our model outperforms a max-pooling loss trained recurrent neural network using LSTM cells, with a significant decrease in false rejection rate. The underlying dataset - Hey Snips utterances recorded by over 2.2K different speakers - has been made publicly available to establish an open reference for wake-word detection.



قيم البحث

اقرأ أيضاً

Recent work on generative modeling of text has found that variational auto-encoders (VAE) incorporating LSTM decoders perform worse than simpler LSTM language models (Bowman et al., 2015). This negative result is so far poorly understood, but has bee n attributed to the propensity of LSTM decoders to ignore conditioning information from the encoder. In this paper, we experiment with a new type of decoder for VAE: a dilated CNN. By changing the decoders dilation architecture, we control the effective context from previously generated words. In experiments, we find that there is a trade off between the contextual capacity of the decoder and the amount of encoding information used. We show that with the right decoder, VAE can outperform LSTM language models. We demonstrate perplexity gains on two datasets, representing the first positive experimental result on the use VAE for generative modeling of text. Further, we conduct an in-depth investigation of the use of VAE (with our new decoding architecture) for semi-supervised and unsupervised labeling tasks, demonstrating gains over several strong baselines.
Keyword spotting (KWS) provides a critical user interface for many mobile and edge applications, including phones, wearables, and cars. As KWS systems are typically always on, maximizing both accuracy and power efficiency are central to their utility . In this work we use hardware aware training (HAT) to build new KWS neural networks based on the Legendre Memory Unit (LMU) that achieve state-of-the-art (SotA) accuracy and low parameter counts. This allows the neural network to run efficiently on standard hardware (212$mu$W). We also characterize the power requirements of custom designed accelerator hardware that achieves SotA power efficiency of 8.79$mu$W, beating general purpose low power hardware (a microcontroller) by 24x and special purpose ASICs by 16x.
Using Intels Loihi neuromorphic research chip and ABRs Nengo Deep Learning toolkit, we analyze the inference speed, dynamic power consumption, and energy cost per inference of a two-layer neural network keyword spotter trained to recognize a single p hrase. We perform comparative analyses of this keyword spotter running on more conventional hardware devices including a CPU, a GPU, Nvidias Jetson TX1, and the Movidius Neural Compute Stick. Our results indicate that for this inference application, Loihi outperforms all of these alternatives on an energy cost per inference basis while maintaining equivalent inference accuracy. Furthermore, an analysis of tradeoffs between network size, inference speed, and energy cost indicates that Loihis comparative advantage over other low-power computing devices improves for larger networks.
Dilated Convolutions have been shown to be highly useful for the task of image segmentation. By introducing gaps into convolutional filters, they enable the use of larger receptive fields without increasing the original kernel size. Even though this allows for the inexpensive capturing of features at different scales, the structure of the dilated convolutional filter leads to a loss of information. We hypothesise that inexpensive modifications to Dilated Convolutional Neural Networks, such as additional averaging layers, could overcome this limitation. In this project we test this hypothesis by evaluating the effect of these modifications for a state-of-the art image segmentation system and compare them to existing approaches with the same objective. Our experiments show that our proposed methods improve the performance of dilated convolutions for image segmentation. Crucially, our modifications achieve these results at a much lower computational cost than previous smoothing approaches.
Keyword spotting--or wakeword detection--is an essential feature for hands-free operation of modern voice-controlled devices. With such devices becoming ubiquitous, users might want to choose a personalized custom wakeword. In this work, we present D ONUT, a CTC-based algorithm for online query-by-example keyword spotting that enables custom wakeword detection. The algorithm works by recording a small number of training examples from the user, generating a set of label sequence hypotheses from these training examples, and detecting the wakeword by aggregating the scores of all the hypotheses given a new audio recording. Our method combines the generalization and interpretability of CTC-based keyword spotting with the user-adaptation and convenience of a conventional query-by-example system. DONUT has low computational requirements and is well-suited for both learning and inference on embedded systems without requiring private user data to be uploaded to the cloud.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا