ﻻ يوجد ملخص باللغة العربية
For a graph $H$ consisting of finitely many internally disjoint paths connecting two vertices, with possibly distinct lengths, we estimate the corresponding extremal number $text{ex}(n,H)$. When the lengths of all paths have the same parity, $text{ex}(n,H)$ is $O(n^{1+1/k^ast})$, where $2k^ast$ is the size of the smallest cycle which is included in $H$ as a subgraph. We also establish the matching lower bound in the particular case of $text{ex}(n,Theta_{3,5,5})$, where $Theta_{3,5,5}$ is the graph consisting of three disjoint paths of lengths $3,5$ and $5$ connecting two vertices.
The theta graph $Theta_{ell,t}$ consists of two vertices joined by $t$ vertex-disjoint paths of length $ell$ each. For fixed odd $ell$ and large $t$, we show that the largest graph not containing $Theta_{ell,t}$ has at most $c_{ell} t^{1-1/ell}n^{1+1
Let $F$ be a fixed graph. The rainbow Turan number of $F$ is defined as the maximum number of edges in a graph on $n$ vertices that has a proper edge-coloring with no rainbow copy of $F$ (where a rainbow copy of $F$ means a copy of $F$ all of whose e
The Turan number of a graph $H$, denoted by $ex(n,H)$, is the maximum number of edges in any graph on $n$ vertices which does not contain $H$ as a subgraph. Let $P_{k}$ denote the path on $k$ vertices and let $mP_{k}$ denote $m$ disjoint copies of $P
In this paper, we show that, for all $ngeq 5$, the maximum number of $2$-chains in a butterfly-free family in the $n$-dimensional Boolean lattice is $leftlceilfrac{n}{2}rightrceilbinom{n}{lfloor n/2rfloor}$. In addition, for the height-2 poset $K_{
Let $F$ be a graph. The planar Turan number of $F$, denoted by $text{ex}_{mathcal{P}}(n,F)$, is the maximum number of edges in an $n$-vertex planar graph containing no copy of $F$ as a subgraph. Let $Theta_k$ denote the family of Theta graphs on $kge