ﻻ يوجد ملخص باللغة العربية
The surface code is currently the primary proposed method for performing quantum error correction. However, despite its many advantages, it has no native method to fault-tolerantly apply non-Clifford gates. Additional techniques are therefore required to achieve universal quantum computation. Here we propose a hybrid scheme which uses small islands of a qudit variant of the surface code to enhance the computational power of the standard surface code. This allows the non-trivial action of the non-Abelian anyons in the former to process information stored in the latter. Specifically, we show that a non-stabilizer state can be prepared, which allows universality to be achieved.
We present a comprehensive and self-contained simplified review of the quantum computing scheme of Phys. Rev. Lett. 98, 190504 (2007), which features a 2-D nearest neighbor coupled lattice of qubits, a threshold error rate approaching 1%, natural asy
The work reported in arXiv:1311.5619v1 proposes to produce continuous-variable cluster states through relativistic motion of cavities. This proposal does not produce the states claimed by the authors. The states actually produced are in general not k
One of the most challenging problems for the realization of a scalable quantum computer is to design a physical device that keeps the error rate for each quantum processing operation low. These errors can originate from the accuracy of quantum manipu
Phosphorus donor spins in silicon offer a number of promising characteristics for the implementation of robust qubits. Amongst various concepts for scale-up, the shared-control concept takes advantage of 3D scanning tunnelling microscope (STM) fabric
In this paper we investigate the linear and nonlinear models of optical quantum computation and discuss their scalability and efficiency. We show how there are significantly different scaling properties in single photon computation when weak cross-Ke