ترغب بنشر مسار تعليمي؟ اضغط هنا

Astrophysical $S_{E2}$ factor of the ${}^{12}mathrm{C}(alpha,gamma){}^{16}mathrm{O}$ reaction through the ${}^{12}mathrm{C}({}^{11}mathrm{B},{}^{7}mathrm{Li}){}^{16}mathrm{O}$ transfer reaction

88   0   0.0 ( 0 )
 نشر من قبل Bing Guo
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The ${}^{12}mathrm{C}(alpha,gamma){}^{16}mathrm{O}$ reaction plays a key role in the evolution of stars with masses of $M >$ 0.55 $M_odot$. The cross-section of the ${}^{12}mathrm{C}(alpha,gamma){}^{16}mathrm{O}$ reaction within the Gamow window ($E_textrm{c.m.}$ = 300 keV, $T_textrm9$ = 0.2) is extremely small (about $10^{-17}$ barn), which makes the direct measurement in a ground-based laboratory with existing techniques unfeasible. Up until now, the cross-sections at lower energies can only be extrapolated from the data at higher energies. However, two subthreshold resonances, located at $E_x$ = 7.117 MeV and $E_x$ = 6.917 MeV, make this extrapolation more complicated. In this work, the 6.917 MeV subthreshold resonance in the ${}^{12}mathrm{C}(alpha,gamma){}^{16}mathrm{O}$ reaction was investigated via the ${}^{12}mathrm{C}({}^{11}mathrm{B},{}^{7}mathrm{Li}){}^{16}mathrm{O}$ reaction. The experiment was performed using the Q3D magnetic spectrograph at the HI-13 tandem accelerator. We measured the angular distribution of the ${}^{12}mathrm{C}({}^{11}mathrm{B},{}^{7}mathrm{Li}){}^{16}mathrm{O}$ transfer reaction leading to the 6.917 MeV state. Based on the FRDWBA analysis, we derived the asymptotic normalization coefficient (ANC) of the 6.917 MeV level in $^{16}$O to be (1.10 $pm$ 0.29) $times 10^{10}$ fm$^{-1}$, with which the reduced $alpha$ width was computed to be $18.0pm4.7$ keV at the channel radius of 6.5 fm. Finally, we calculated the astrophysical $S_{E2}(300)$ factor of the ground-state transitions to be 46.2 $pm$ 7.7 keV b. The result for the astrophysical $S_{E2}(300)$ factor confirms the values obtained in various direct and indirect measurements and presents an independent examination of the most important data in nuclear astrophysics.



قيم البحث

اقرأ أيضاً

Collisions of light and heavy nuclei in relativistic heavy-ion collisions have been shown to be sensitive to nuclear structure. With a proposed $^{16}mathrm{O}^{16}mathrm{O}$ run at the LHC and RHIC we study the potential for finding $alpha$ clusteri ng in $^{16}$O. Here we use the state-of-the-art iEBE-VISHNU package with $^{16}$O nucleonic configurations from {rm ab initio} nuclear lattice simulations. This setup was tuned using a Bayesian analysis on pPb and PbPb systems. We find that the $^{16}mathrm{O}^{16}mathrm{O}$ system always begins far from equilibrium and that at LHC and RHIC it approaches the regime of hydrodynamic applicability only at very late times. Finally, by taking ratios of flow harmonics we are able to find measurable differences between $alpha$-clustering, nucleonic, and subnucleonic degrees of freedom in the initial state.
Geometric configurations of three-$alpha$ particles in the ground- and first-excited $J^pi=0^+$ states of $^{12}$C are discussed within two types of $alpha$-cluster models which treat the Pauli principle differently. Though there are some quantitativ e differences especially in the internal region of the wave functions, equilateral triangle configurations are dominant in the ground state, while in the first excited $0^+$ state isosceles triangle configurations dominate, originating from $^8{rm Be}+alpha$ configurations.
The $^{23}$Na$(alpha,p)^{26}$Mg and $^{23}$Na$(alpha,n)^{26}$Al reactions are important for our understanding of the $^{26}$Al abundance in massive stars. The aim of this work is to report on a direct and simultaneous measurement of these astrophysic ally important reactions using an active target system. The reactions were investigated in inverse kinematics using $^{4}$He as the active target gas in the detector. We measured the excitation functions in the energy range of about 2 to 6 MeV in the center of mass. We have found that the cross sections of the $^{23}$Na$(alpha,p)^{26}$Mg and the $^{23}$Na$(alpha,n)^{26}$Al reactions are in good agreement with previous experiments, and with statistical model calculations.
The existence of a new force beyond the Standard Model is compelling because it could explain several striking astrophysical observations which fail standard interpretations. We searched for the light vector mediator of this dark force, the $mathrm{U }$ boson, with the KLOE detector at the DA$Phi$NE $mathrm{e}^{+}mathrm{e}^{-}$ collider. Using an integrated luminosity of 1.54 fb$^{-1}$, we studied the process $mathrm{e}^{+}mathrm{e}^{-} to mathrm{U}gamma$, with $mathrm{U} to mathrm{e}^{+}mathrm{e}^{-}$, using radiative-return to search for a resonant peak in the dielectron invariant-mass distribution. We did not find evidence for a signal, and set a 90%~CL upper limit on the mixing strength between the Standard Model photon and the dark photon, $varepsilon^2$, at $10^{-6}$--$10^{-4}$ in the 5--520~MeV/c$^2$ mass range.
We show that the observed time-reversal symmetry breaking (TRSB) of the superconducting state in $mathrm{Sr}_{2}mathrm{Ru}mathrm{O}_{4}$ can be understood as originating from inhomogeneous strain fields near edge dislocations of the crystal. Specific ally, we argue that, without strain inhomogeneities, $mathrm{Sr}_{2}mathrm{Ru}mathrm{O}_{4}$ is a single-component, time-reversal symmetric superconductor, likely with $d_{x^{2}-y^{2}}$ symmetry. However, due to the strong strain inhomogeneities generated by dislocations, a slowly-decaying sub-leading pairing state contributes to the condensate in significant portions of the sample. As it phase winds around the dislocation, time-reversal symmetry is locally broken. Global phase locking and TRSB occur at a sharp Ising transition that is not accompanied by a change of the single-particle gap and yields a very small heat capacity anomaly. Our model thus explains the puzzling absence of a measurable heat capacity anomaly at the TRSB transition in strained samples, and the dilute nature of the time-reversal symmetry broken state probed by muon spin rotation experiments. We propose that plastic deformations of the material may be used to manipulate the onset of broken time-reversal symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا