ﻻ يوجد ملخص باللغة العربية
We show that the observed time-reversal symmetry breaking (TRSB) of the superconducting state in $mathrm{Sr}_{2}mathrm{Ru}mathrm{O}_{4}$ can be understood as originating from inhomogeneous strain fields near edge dislocations of the crystal. Specifically, we argue that, without strain inhomogeneities, $mathrm{Sr}_{2}mathrm{Ru}mathrm{O}_{4}$ is a single-component, time-reversal symmetric superconductor, likely with $d_{x^{2}-y^{2}}$ symmetry. However, due to the strong strain inhomogeneities generated by dislocations, a slowly-decaying sub-leading pairing state contributes to the condensate in significant portions of the sample. As it phase winds around the dislocation, time-reversal symmetry is locally broken. Global phase locking and TRSB occur at a sharp Ising transition that is not accompanied by a change of the single-particle gap and yields a very small heat capacity anomaly. Our model thus explains the puzzling absence of a measurable heat capacity anomaly at the TRSB transition in strained samples, and the dilute nature of the time-reversal symmetry broken state probed by muon spin rotation experiments. We propose that plastic deformations of the material may be used to manipulate the onset of broken time-reversal symmetry.
The iron-based superconductors are characterized by strong fluctuations due to high transition temperatures and small coherence lengths. We investigate fluctuation behavior in the magnetic iron-pnictide superconductor $mathrm{Rb}mathrm{Eu}mathrm{Fe}_
Using Scanning tunneling spectroscopy (STS), we report the correlation between spatial gap inhomogeneity and the zinc (Zn) impurity resonance in single crystals of Bi$_{mathrm{2}}$Sr$_{mathrm{2}}$Ca(Cu$_{mathrm{1-}x}$Zn$_{x}$)$_{mathrm{2}}$O$_{mathrm
By using scanning tunneling microscopy (STM) we find and characterize dispersive, energy-symmetric in-gap states in the iron-based superconductor $mathrm{FeTe}_{0.55}mathrm{Se}_{0.45}$, a material that exhibits signatures of topological superconducti
We investigated SrFe$mathrm{_2}$(As$mathrm{_{1-x}}$P$mathrm{_x}$)$mathrm{_2}$ single crystals with four different phosphorus concentrations x in the superconducting phase (x = 0.35, 0.46) and in the magnetic phase (x = 0, 0.2). The superconducting sa
We report comprehensive temperature and doping-dependences of the Raman scattering spectra for $mathrm{BaFe_{2}}(mathrm{As}_{1-x}mathrm{P}_{x}mathrm{)_{2}}$ ($x =$ 0, 0.07, 0.24, 0.32, and 0.38), focusing on the nematic fluctuation and the supercondu