ﻻ يوجد ملخص باللغة العربية
About two generations ago, a large part of AMO science was dominated by experimental high energy collision studies and perturbative theoretical methods. Since then, AMO science has undergone a transition and is now dominated by quantum, ultracold, and ultrafast studies. But in the process, the field has passed over the complexity that lies between these two extremes. Most of the Universe resides in this intermediate region. We put forward that the next frontier for AMO science is to explore the AMO complexity that describes most of the Cosmos.
In this article, we report on the work done with the LNE-SYRTE atomic clock ensemble during the last 10 years. We cover progress made in atomic fountains and in their application to timekeeping. We also cover the development of optical lattice clocks
This editorial introduces the J. Phys. B: Atomic, Molecular and Optical Physics Special Issue Atomic and Molecular Processes in the Ultracold Regime, the Chemical Regime and Astrophysics dedicated to Professor Alexander Dalgarno (1928-2015). After a
Extra-laboratory atomic clocks are necessary for a wide array of applications (e.g. satellite-based navigation and communication). Building upon existing vapor cell and laser technologies, we describe an optical atomic clock, designed around a simple
Probing an atomic resonance without disturbing it is an ubiquitous issue in physics. This problem is critical in high-accuracy spectroscopy or for the next generation of atomic optical clocks. Ultra-high resolution frequency metrology requires sophis
We propose a space-based gravitational wave detector consisting of two spatially separated, drag-free satellites sharing ultra-stable optical laser light over a single baseline. Each satellite contains an optical lattice atomic clock, which serves as