ﻻ يوجد ملخص باللغة العربية
Elastic scattering between dark matter particles and a relativistic species such as photons or neutrinos leads to a transfer of energy from the latter due to their intrinsically different temperature scaling relations. In this work, we point out that this siphoning of energy from the radiation bath manifests as a change in the effective number of neutrinos $N_{rm eff}$, and compute the expected shift $Delta N_{rm eff}$ for dark matter-photon and dark matter-neutrino elastic scattering as a function of the dark matter mass $m_psi$ and scattering cross section $sigma_{psi-X}$. For $(m_psi,sigma_{psi-X})$-parameter regions already explored by nonlinear probes such as the Lyman-$alpha$ forest through collisional and/or free-streaming damping, we find shifts of $|Delta N_{rm eff}| simeq O(10^{-2})$, which may be within the reach of the proposed CMB-S4 experiment. For most of the as-yet-unexplored parameter space, however, we expect $|Delta N_{rm eff}| lesssim O(10^{-3})$. An ideal 21 cm tomography survey of the dark ages limited only by cosmic variance is potentially sensitive to $|Delta N_{rm eff}| simeq O(10^{-6})$, in which case dark matter masses up to $m_{psi} sim 10 , textrm{MeV}$ may be probed via their effect on $N_{rm eff}$.
We argue that the acoustic damping of the matter power spectrum is not a generic feature of the kinetic decoupling of dark matter, but even the enhancement can be realized depending on the nature of the kinetic decoupling when compared to that in the
We investigate whether the $4.4sigma$ tension on $H_0$ between SH$_{0}$ES 2019 and Planck 2018 can be alleviated by a variation of Newtons constant $G_N$ between the early and the late Universe. This changes the Hubble rate before recombination, simi
An extension to the Einstein-Cartan (EC) action is discussed in terms of cosmological solutions. The torsion incorporated in the EC Lagrangian is assumed to be totally anti-symmetric, and written by of a vector $S^mu$. Then this torsion model, compli
We propose a novel technique to separate the late-time, post-reionization component of the kinetic Sunyaev-Zeldovich (kSZ) effect from the contribution to it from a (poorly understood and probably patchy) reionization history. The kSZ effect is one o
The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed $c^{2}_{rm eff}$ and for $c_{rm eff}=0$ dark ener