ﻻ يوجد ملخص باللغة العربية
The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed $c^{2}_{rm eff}$ and for $c_{rm eff}=0$ dark energy clusters in a similar fashion to dark matter while for $c_{rm eff}=1$ it stays (approximately) homogeneous. In this paper we consider two distinct equations of state for the dark energy component, $w_{rm d}=const$ and $w_{rm d}=w_0+w_1left(frac{z}{1+z}right)$ with $c_{rm eff}$ as a free parameter and we try to constrain the dark energy effective sound speed using current available data including SnIa, Baryon Acoustic Oscillation, CMB shift parameter ({em Planck} and {em WMAP}), Hubble parameter, Big Bang Nucleosynthesis and the growth rate of structures $fsigma_{8}(z)$. At first we derive the most general form of the equations governing dark matter and dark energy clustering under the assumption that $c_{rm eff}=const$. Finally, performing an overall likelihood analysis we find that the likelihood function peaks at $c_{rm eff}=0$, however the dark energy sound speed is degenerate with respect to the cosmological parameters, namely $Omega_{rm m}$ and $w_{rm d}$.
In this paper we study the evolution of cosmological perturbations in the presence of dynamical dark energy, and revisit the issue of dark energy perturbations. For a generally parameterized equation of state (EoS) such as w_D(z) = w_0+w_1frac{z}{1+z
In this work, we study the extended viscous dark energy models in the context of matter perturbations. To do this, we assume an alternative interpretation of the flat Friedmann-Lema^itre-Robertson-Walker Universe, through the nonadditive entropy and
We study how the cosmological constraints from growth data are improved by including the measurements of bias from Dark Energy Survey (DES). In particular, we utilize the biasing properties of the DES Luminous Red Galaxies (LRGs) and the growth data
We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with $k^2ll {cal H}ma$, we h
We present a model for the structure of the particle phase space average density ($P^2SAD$) in galactic haloes, introduced recently as a novel measure of the clustering of dark matter. Our model is based on the stable clustering hypothesis in phase s