ترغب بنشر مسار تعليمي؟ اضغط هنا

HD2685 b: A Hot-Jupiter orbiting an early F-type star detected by TESS

71   0   0.0 ( 0 )
 نشر من قبل Matias Jones
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the confirmation of a transiting giant planet around the relatively hot (Teff = 6801 $pm$ 56 K) star HD2685, whose transit signal was detected in Sector 1 data of the TESS mission. We confirmed the planetary nature of the transit signal by using Doppler velocimetric measurements with CHIRON, CORALIE and FEROS, as well as photometric data with CHAT and LCOGT. From the photometry and radial velocities joint analysis, we derived the following parameters for HD2685 $b$: $P$=4.12692$pm$0.00004 days, M$_P$=1.18 $pm$ 0.09 $M_J$ and $R_P$=1.44 $pm$ 0.01 $R_J$. This system is a typical example of an inflated transiting Hot-Jupiter in a circular orbit. Given the host star apparent visual magnitude ($V$ = 9.6 mag), this is one of the brightest known stars hosting a transiting Hot-Jupiter, and a good example of the upcoming systems that will be detected by TESS during the two-year primary mission. This is also an excellent target for future ground and space based atmospheric characterization as well as a good candidate for measuring the projected spin-orbit misalignment angle via the Rossiter-McLaughlin effect.



قيم البحث

اقرأ أيضاً

261 - D. Bayliss , G. Zhou , K. Penev 2013
We report the discovery by the HATSouth survey of HATS-3b, a transiting extrasolar planet orbiting a V=12.4 F-dwarf star. HATS-3b has a period of P = 3.5479d, mass of Mp = 1.07MJ, and radius of Rp = 1.38RJ. Given the radius of the planet, the brightn ess of the host star, and the stellar rotational velocity (vsini = 9.0km/s), this system will make an interesting target for future observations to measure the Rossiter-McLaughlin effect and determine its spin-orbit alignment. We detail the low/medium-resolution reconnaissance spectroscopy that we are now using to deal with large numbers of transiting planet candidates produced by the HATSouth survey. We show that this important step in discovering planets produces logg and Teff parameters at a precision suitable for efficient candidate vetting, as well as efficiently identifying stellar mass eclipsing binaries with radial velocity semi-amplitudes as low as 1 km/s.
We present the discovery of TOI-197.01, the first transiting planet identified by the Transiting Exoplanet Survey Satellite (TESS) for which asteroseismology of the host star is possible. TOI-197 (HIP116158) is a bright (V=8.2 mag), spectroscopically classified subgiant which oscillates with an average frequency of about 430 muHz and displays a clear signature of mixed modes. The oscillation amplitude confirms that the redder TESS bandpass compared to Kepler has a small effect on the oscillations, supporting the expected yield of thousands of solar-like oscillators with TESS 2-minute cadence observations. Asteroseismic modeling yields a robust determination of the host star radius (2.943+/-0.064 Rsun), mass (1.212 +/- 0.074 Msun) and age (4.9+/-1.1 Gyr), and demonstrates that it has just started ascending the red-giant branch. Combining asteroseismology with transit modeling and radial-velocity observations, we show that the planet is a hot Saturn (9.17+/-0.33 Rearth) with an orbital period of ~14.3 days, irradiance of 343+/-24 Fearth, moderate mass (60.5 +/- 5.7 Mearth) and density (0.431+/-0.062 gcc). The properties of TOI-197.01 show that the host-star metallicity - planet mass correlation found in sub-Saturns (4-8 Rearth) does not extend to larger radii, indicating that planets in the transition between sub-Saturns and Jupiters follow a relatively narrow range of densities. With a density measured to ~15%, TOI-197.01 is one of the best characterized Saturn-sized planets to date, augmenting the small number of known transiting planets around evolved stars and demonstrating the power of TESS to characterize exoplanets and their host stars using asteroseismology.
175 - P. F. L Maxted 2010
We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V=11.3) solar-type star (Teff=6100 +- 100K, [Fe/H] = -0.13 +- 0.10). The lightcurve of the star obtained with the WASP-South and WASP-North instruments shows periodic transit-like features with a depth of about 1% and a duration of 0.10d every 2.72d. The presence of a transit-like feature in the lightcurve is confirmed using z-band photometry obtained with Faulkes Telescope North. High resolution spectroscopy obtained with the CORALIE spectrograph confirms the presence of a planetary mass companion. From a combined analysis of the spectroscopic and photometric data, assuming that the star is a typical main-sequence star, we estimate that the planet has a mass M_p = 3.60 +- 0.07 M_Jup and a radius R_p = 1.19 +- 0.06R_Jup. WASP-32 is one of a small group of hot Jupiters with masses M_p > 3M_Jup. We find that some stars with hot Jupiter companions and with masses M_* =~ 1.2M_sun, including WASP-32, are depleted in lithium, but that the majority of these stars have similar lithium abundances to field stars.
We report the first confirmation of a hot Jupiter discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HD 202772A b. The transit signal was detected in the data from TESS Sector 1, and was confirmed to be of planetary origin throug h radial-velocity measurements. HD 202772A b is orbiting a mildly evolved star with a period of 3.3 days. With an apparent magnitude of V = 8.3, the star is among the brightest known to host a hot Jupiter. Based on the 27days of TESS photometry, and radial velocity data from the CHIRON and HARPS spectrographs, the planet has a mass of 1.008+/-0.074 M_J and radius of 1.562+/-0.053 R_J , making it an inflated gas giant. HD 202772A b is a rare example of a transiting hot Jupiter around a quickly evolving star. It is also one of the most strongly irradiated hot Jupiters currently known.
Hot Jupiters are rarely accompanied by other planets within a factor of a few in orbital distance. Previously, only two such systems have been found. Here, we report the discovery of a third system using data from the Transiting Exoplanet Survey Sate llite (TESS). The host star, TOI-1130, is an 11th magnitude K-dwarf in the Gaia G band. It has two transiting planets: a Neptune-sized planet ($3.65pm 0.10$ $R_E$) with a 4.1-day period, and a hot Jupiter ($1.50^{+0.27}_{-0.22}$ $R_J$) with an 8.4-day period. Precise radial-velocity observations show that the mass of the hot Jupiter is $0.974^{+0.043}_{-0.044}$ $M_J$. For the inner Neptune, the data provide only an upper limit on the mass of 0.17 $M_J$ (3$sigma$). Nevertheless, we are confident the inner planet is real, based on follow-up ground-based photometry and adaptive optics imaging that rule out other plausible sources of the TESS transit signal. The unusual planetary architecture of and the brightness of the host star make TOI-1130 a good test case for planet formation theories, and an attractive target for future spectroscopic observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا