ﻻ يوجد ملخص باللغة العربية
We study freely decaying quantum turbulence by performing high resolution numerical simulations of the Gross-Pitaevskii equation (GPE) in the Taylor-Green geometry. We use resolutions ranging from $1024^3$ to $4096^3$ grid points. The energy spectrum confirms the presence of both a Kolmogorov scaling range for scales larger than the intervortex scale $ell$, and a second inertial range for scales smaller than $ell$. Vortex line visualizations show the existence of substructures formed by a myriad of small-scale knotted vortices. Next, we study finite temperature effects in the decay of quantum turbulence by using the stochastic Ginzburg-Landau equation to generate thermal states, and then by evolving a combination of these thermal states with the Taylor-Green initial conditions using the GPE. We extract the mean free path out of these simulations by measuring the spectral broadening in the Bogoliubov dispersion relation obtained from spatio-temporal spectra, and use it to quantify the effective viscosity as a function of the temperature. Finally, in order to compare the decay of high temperature quantum and that of classical flows, and to further calibrate the estimations of viscosity from the mean free path in the GPE simulations, we perform low Reynolds number simulations of the Navier-Stokes equations.
We study two-dimensional quantum turbulence in miscible binary Bose-Einstein condensates in either a harmonic trap or a steep-wall trap through the numerical simulations of the Gross-Pitaevskii equations. The turbulence is generated through a Gaussia
We analyse the formation and the dynamics of quantum turbulence in a two-dimensional Bose-Einstein condensate with a Josephson junction barrier modelled using the Gross-Pitaevskii equation. We show that a sufficiently high initial superfluid density
We carry out extensive direct numerical simulations (DNSs) to investigate the interaction of active particles and fields in the two-dimensional (2D) Gross-Pitaevskii (GP) superfluid, in both simple and turbulent flows. The particles are active in the
The wake following a vessel in water is a signature interference effect of moving bodies, and, as described by Lord Kelvin, is contained within a constant universal angle. However, wakes may accompany different kinds of moving disturbances in other s
We statistically study vortex reconnections in quantum fluids by evolving different realizations of vortex Hopf links using the Gross--Pitaevskii model. Despite the time-reversibility of the model, we report a clear evidence that the dynamics of the