ﻻ يوجد ملخص باللغة العربية
The wake following a vessel in water is a signature interference effect of moving bodies, and, as described by Lord Kelvin, is contained within a constant universal angle. However, wakes may accompany different kinds of moving disturbances in other situations and even in lattice systems. Here, we investigate the effect of moving disturbances on a Fermi lattice gas of ultracold atoms and analyze the novel types of wake patterns that may occur. We show how at half-filling, the wake angles are dominated by the ratio of the hopping energy to the velocity of the disturbance and on the angle of motion relative to the lattice direction. Moreover, we study the difference between wakes left behind a moving particle detector versus that of a moving potential or a moving particle extractor. We show that these scenarios exhibit dramatically different behavior at half-filling, with the measurement wake following an idealized detector vanishing, though the motion of the detector does still leaves a trace through a fluctuation wake. Finally, we discuss the experimental requirements to observe our predictions in ultracold fermionic atoms in optical lattices.
We show that, for fermionic atoms in a one-dimensional optical lattice, the fraction of atoms in doubly occupied sites is a highly non-monotonic function of temperature. We demonstrate that this property persists even in the presence of realistic har
While spin-orbit coupling (SOC), an essential mechanism underlying quantum phenomena from the spin Hall effect to topological insulators, has been widely studied in well-isolated Hermitian systems, much less is known when the dissipation plays a majo
The exchange coupling between quantum mechanical spins lies at the origin of quantum magnetism. We report on the observation of nearest-neighbor magnetic spin correlations emerging in the many-body state of a thermalized Fermi gas in an optical latti
We show that an elliptical obstacle moving through a Bose-Einstein condensate generates wakes of quantum vortices which resemble those of classical viscous flow past a cylinder or sphere. The role of ellipticity is to facilitate the interaction of th
Turbulence is an intriguing non-equilibrium state, which originates from fluid mechanics and has far-reaching consequences in the description of climate physics, the characterization of quantum hydrodynamics, and the understanding of cosmic evolution