ﻻ يوجد ملخص باللغة العربية
Two-level systems (TLS) in amorphous materials limit coherence times of a number of solid-state quantum devices. Interactions between TLS become prominent below 100 mK, but the coupling mechanism and statistical properties are still unclear. Here we determine the homogeneous linewidth of ytterbium ions (Yb$ ^{3+} $) in silica glass at 10-80 mK by using photon echo techniques as a probe of TLS. First, the homogeneous linewidth can be reduced by applying a magnetic field of 0.3 T. This effect is due to reduced magnetic interactions between adjacent Yb$ ^{3+} $. Secondly, we observe saturation of the linewidth below 50 mK to a level of approximately 30 kHz, which is much larger than the lifetime-limited value of 0.2 kHz. This saturation behavior is in conflict with the coupling to independent TLS. We show that this effect can be explained by coherently coupled TLS.
In $e$-beam evaporated amorphous silicon ($a$-Si), the densities of two-level systems (TLS), $n_{0}$ and $overline{P}$, determined from specific heat $C$ and internal friction $Q^{-1}$ measurements, respectively, have been shown to vary by over three
Tunnelling Two-Level Systems (TLS) dominate the physics of glasses at low temperatures. Yet TLS are extremely rare and it is extremely difficult to directly observe them $it{in , silico}$. It is thus crucial to develop simple structural predictors th
We consider performing adiabatic rapid passage (ARP) using frequency-swept driving pulses to excite a collection of interacting two-level systems. Such a model arises in a wide range of many-body quantum systems, such as cavity QED or quantum dots, w
We argue that the time-resolved spectrum of selectively-excited resonance fluorescence at low temperature provides a tool for probing the quantum-mechanical level repulsion in the Lifshits tail of the electronic density of states in a wide variety of
We present a quantum repeater scheme that is based on individual erbium and europium ions. Erbium ions are attractive because they emit photons at telecommunication wavelength, while europium ions offer exceptional spin coherence for long-term storag