ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain Agnostic Real-Valued Specificity Prediction

275   0   0.0 ( 0 )
 نشر من قبل Wei-Jen Ko
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sentence specificity quantifies the level of detail in a sentence, characterizing the organization of information in discourse. While this information is useful for many downstream applications, specificity prediction systems predict very coarse labels (binary or ternary) and are trained on and tailored toward specific domains (e.g., news). The goal of this work is to generalize specificity prediction to domains where no labeled data is available and output more nuanced real-valued specificity ratings. We present an unsupervised domain adaptation system for sentence specificity prediction, specifically designed to output real-valued estimates from binary training labels. To calibrate the values of these predictions appropriately, we regularize the posterior distribution of the labels towards a reference distribution. We show that our framework generalizes well to three different domains with 50%~68% mean absolute error reduction than the current state-of-the-art system trained for news sentence specificity. We also demonstrate the potential of our work in improving the quality and informativeness of dialogue generation systems.



قيم البحث

اقرأ أيضاً

Many pledges are made in the course of an election campaign, forming important corpora for political analysis of campaign strategy and governmental accountability. At present, there are no publicly available annotated datasets of pledges, and most po litical analyses rely on manual analysis. In this paper we collate a novel dataset of manifestos from eleven Australian federal election cycles, with over 12,000 sentences annotated with specificity (e.g., rhetorical vs. detailed pledge) on a fine-grained scale. We propose deep ordinal regression approaches for specificity prediction, under both supervised and semi-supervised settings, and provide empirical results demonstrating the effectiveness of the proposed techniques over several baseline approaches. We analyze the utility of pledge specificity modeling across a spectrum of policy issues in performing ideology prediction, and further provide qualitative analysis in terms of capturing party-specific issue salience across election cycles.
With the rapid increase in the volume of dialogue data from daily life, there is a growing demand for dialogue summarization. Unfortunately, training a large summarization model is generally infeasible due to the inadequacy of dialogue data with anno tated summaries. Most existing works for low-resource dialogue summarization directly pretrain models in other domains, e.g., the news domain, but they generally neglect the huge difference between dialogues and conventional articles. To bridge the gap between out-of-domain pretraining and in-domain fine-tuning, in this work, we propose a multi-source pretraining paradigm to better leverage the external summary data. Specifically, we exploit large-scale in-domain non-summary data to separately pretrain the dialogue encoder and the summary decoder. The combined encoder-decoder model is then pretrained on the out-of-domain summary data using adversarial critics, aiming to facilitate domain-agnostic summarization. The experimental results on two public datasets show that with only limited training data, our approach achieves competitive performance and generalizes well in different dialogue scenarios.
In this paper we study empirically the validity of measures of referential success for referring expressions involving gradual properties. More specifically, we study the ability of several measures of referential success to predict the success of a user in choosing the right object, given a referring expression. Experimental results indicate that certain fuzzy measures of success are able to predict human accuracy in reference resolution. Such measures are therefore suitable for the estimation of the success or otherwise of a referring expression produced by a generation algorithm, especially in case the properties in a domain cannot be assumed to have crisp denotations.
The like-Lebesgue integral of real-valued measurable functions (abbreviated as textit{RVM-MI})is the most complete and appropriate integration Theory. Integrals are also defined in abstract spaces since Pettis (1938). In particular, Bochner integrals received much interest with very recent researches. It is very commode to use the textit{RVM-MI} in constructing Bochner integral in Banach or in locally convex spaces. In this simple not, we prove that the Bochner integral and the textit{RVM-MI} with respect to a finite measure $m$ are the same on $mathbb{R}$. Applications of that equality may be useful in weak limits on Banach space.
128 - Janne Pylkkonen 2021
Adaption of end-to-end speech recognition systems to new tasks is known to be challenging. A number of solutions have been proposed which apply external language models with various fusion methods, possibly with a combination of two-pass decoding. Al so TTS systems have been used to generate adaptation data for the end-to-end models. In this paper we show that RNN-transducer models can be effectively adapted to new domains using only small amounts of textual data. By taking advantage of models inherent structure, where the prediction network is interpreted as a language model, we can apply fast adaptation to the model. Adapting the model avoids the need for complicated decoding time fusions and external language models. Using appropriate regularization, the prediction network can be adapted to new domains while still retaining good generalization capabilities. We show with multiple ASR evaluation tasks how this method can provide relative gains of 10-45% in target task WER. We also share insights how RNN-transducer prediction network performs as a language model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا