ﻻ يوجد ملخص باللغة العربية
With the rapid increase in the volume of dialogue data from daily life, there is a growing demand for dialogue summarization. Unfortunately, training a large summarization model is generally infeasible due to the inadequacy of dialogue data with annotated summaries. Most existing works for low-resource dialogue summarization directly pretrain models in other domains, e.g., the news domain, but they generally neglect the huge difference between dialogues and conventional articles. To bridge the gap between out-of-domain pretraining and in-domain fine-tuning, in this work, we propose a multi-source pretraining paradigm to better leverage the external summary data. Specifically, we exploit large-scale in-domain non-summary data to separately pretrain the dialogue encoder and the summary decoder. The combined encoder-decoder model is then pretrained on the out-of-domain summary data using adversarial critics, aiming to facilitate domain-agnostic summarization. The experimental results on two public datasets show that with only limited training data, our approach achieves competitive performance and generalizes well in different dialogue scenarios.
State-of-the-art abstractive summarization models generally rely on extensive labeled data, which lowers their generalization ability on domains where such data are not available. In this paper, we present a study of domain adaptation for the abstrac
Language models like BERT and SpanBERT pretrained on open-domain data have obtained impressive gains on various NLP tasks. In this paper, we probe the effectiveness of domain-adaptive pretraining objectives on downstream tasks. In particular, three o
With the abundance of automatic meeting transcripts, meeting summarization is of great interest to both participants and other parties. Traditional methods of summarizing meetings depend on complex multi-step pipelines that make joint optimization in
Multi-role dialogue understanding comprises a wide range of diverse tasks such as question answering, act classification, dialogue summarization etc. While dialogue corpora are abundantly available, labeled data, for specific learning tasks, can be h
Recent work in open-domain conversational agents has demonstrated that significant improvements in model engagingness and humanness metrics can be achieved via massive scaling in both pre-training data and model size (Adiwardana et al., 2020; Roller