ﻻ يوجد ملخص باللغة العربية
Attention-based methods and Connectionist Temporal Classification (CTC) network have been promising research directions for end-to-end Automatic Speech Recognition (ASR). The joint CTC/Attention model has achieved great success by utilizing both architectures during multi-task training and joint decoding. In this work, we present a novel Multi-Encoder Multi-Resolution (MEMR) framework based on the joint CTC/Attention model. Two heterogeneous encoders with different architectures, temporal resolutions and separate CTC networks work in parallel to extract complimentary acoustic information. A hierarchical attention mechanism is then used to combine the encoder-level information. To demonstrate the effectiveness of the proposed model, experiments are conducted on Wall Street Journal (WSJ) and CHiME-4, resulting in relative Word Error Rate (WER) reduction of 18.0-32.1%. Moreover, the proposed MEMR model achieves 3.6% WER in the WSJ eval92 test set, which is the best WER reported for an end-to-end system on this benchmark.
Automatic Speech Recognition (ASR) using multiple microphone arrays has achieved great success in the far-field robustness. Taking advantage of all the information that each array shares and contributes is crucial in this task. Motivated by the advan
Attention-based methods and Connectionist Temporal Classification (CTC) network have been promising research directions for end-to-end (E2E) Automatic Speech Recognition (ASR). The joint CTC/Attention model has achieved great success by utilizing bot
Transformers are powerful neural architectures that allow integrating different modalities using attention mechanisms. In this paper, we leverage the neural transformer architectures for multi-channel speech recognition systems, where the spectral an
In this work, we extend ClariNet (Ping et al., 2019), a fully end-to-end speech synthesis model (i.e., text-to-wave), to generate high-fidelity speech from multiple speakers. To model the unique characteristic of different voices, low dimensional tra
End-to-end multi-talker speech recognition is an emerging research trend in the speech community due to its vast potential in applications such as conversation and meeting transcriptions. To the best of our knowledge, all existing research works are