ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Shaping Strategies in Human-in-the-loop Interactive Reinforcement Learning

85   0   0.0 ( 0 )
 نشر من قبل Chao Yu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Providing reinforcement learning agents with informationally rich human knowledge can dramatically improve various aspects of learning. Prior work has developed different kinds of shaping methods that enable agents to learn efficiently in complex environments. All these methods, however, tailor human guidance to agents in specialized shaping procedures, thus embodying various characteristics and advantages in different domains. In this paper, we investigate the interplay between different shaping methods for more robust learning performance. We propose an adaptive shaping algorithm which is capable of learning the most suitable shaping method in an on-line manner. Results in two classic domains verify its effectiveness from both simulated and real human studies, shedding some light on the role and impact of human factors in human-robot collaborative learning.

قيم البحث

اقرأ أيضاً

Exploration has been one of the greatest challenges in reinforcement learning (RL), which is a large obstacle in the application of RL to robotics. Even with state-of-the-art RL algorithms, building a well-learned agent often requires too many trials , mainly due to the difficulty of matching its actions with rewards in the distant future. A remedy for this is to train an agent with real-time feedback from a human observer who immediately gives rewards for some actions. This study tackles a series of challenges for introducing such a human-in-the-loop RL scheme. The first contribution of this work is our experiments with a precisely modeled human observer: binary, delay, stochasticity, unsustainability, and natural reaction. We also propose an RL method called DQN-TAMER, which efficiently uses both human feedback and distant rewards. We find that DQN-TAMER agents outperform their baselines in Maze and Taxi simulated environments. Furthermore, we demonstrate a real-world human-in-the-loop RL application where a camera automatically recognizes a users facial expressions as feedback to the agent while the agent explores a maze.
Providing Reinforcement Learning agents with expert advice can dramatically improve various aspects of learning. Prior work has developed teaching protocols that enable agents to learn efficiently in complex environments; many of these methods tailor the teachers guidance to agents with a particular representation or underlying learning scheme, offering effective but specialized teaching procedures. In this work, we explore protocol programs, an agent-agnostic schema for Human-in-the-Loop Reinforcement Learning. Our goal is to incorporate the beneficial properties of a human teacher into Reinforcement Learning without making strong assumptions about the inner workings of the agent. We show how to represent existing approaches such as action pruning, reward shaping, and training in simulation as special cases of our schema and conduct preliminary experiments on simple domains.
We argue that a key challenge in enabling usable and useful interactive task learning for intelligent agents is to facilitate effective Human-AI collaboration. We reflect on our past 5 years of efforts on designing, developing and studying the SUGILI TE system, discuss the issues on incorporating recent advances in AI with HCI principles in mixed-initiative interactions and multi-modal interactions, and summarize the lessons we learned. Lastly, we identify several challenges and opportunities, and describe our ongoing work
Imitation Learning is a promising paradigm for learning complex robot manipulation skills by reproducing behavior from human demonstrations. However, manipulation tasks often contain bottleneck regions that require a sequence of precise actions to ma ke meaningful progress, such as a robot inserting a pod into a coffee machine to make coffee. Trained policies can fail in these regions because small deviations in actions can lead the policy into states not covered by the demonstrations. Intervention-based policy learning is an alternative that can address this issue -- it allows human operators to monitor trained policies and take over control when they encounter failures. In this paper, we build a data collection system tailored to 6-DoF manipulation settings, that enables remote human operators to monitor and intervene on trained policies. We develop a simple and effective algorithm to train the policy iteratively on new data collected by the system that encourages the policy to learn how to traverse bottlenecks through the interventions. We demonstrate that agents trained on data collected by our intervention-based system and algorithm outperform agents trained on an equivalent number of samples collected by non-interventional demonstrators, and further show that our method outperforms multiple state-of-the-art baselines for learning from the human interventions on a challenging robot threading task and a coffee making task. Additional results and videos at https://sites.google.com/stanford.edu/iwr .
The interpretation of deep neural networks (DNNs) has become a key topic as more and more people apply them to solve various problems and making critical decisions. Concept-based explanations have recently become a popular approach for post-hoc inter pretation of DNNs. However, identifying human-understandable visual concepts that affect model decisions is a challenging task that is not easily addressed with automatic approaches. We present a novel human-in-the-loop approach to generate user-defined concepts for model interpretation and diagnostics. Central to our proposal is the use of active learning, where human knowledge and feedback are combined to train a concept extractor with very little human labeling effort. We integrate this process into an interactive system, ConceptExtract. Through two case studies, we show how our approach helps analyze model behavior and extract human-friendly concepts for different machine learning tasks and datasets and how to use these concepts to understand the predictions, compare model performance and make suggestions for model refinement. Quantitative experiments show that our active learning approach can accurately extract meaningful visual concepts. More importantly, by identifying visual concepts that negatively affect model performance, we develop the corresponding data augmentation strategy that consistently improves model performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا