ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematics and dynamics of the luminous infrared galaxy pair NGC 5257/58 (Arp 240)

70   0   0.0 ( 0 )
 نشر من قبل Isaura Fuentes-Carrera
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Encounters between galaxies modify their morphology, kinematics, and star formation (SF) history. The relation between these changes and external perturbations is not straightforward. The great number of parameters involved requires both the study of large samples and individual encounters where particular features, motions, and perturbations can be traced and analysed in detail. We analysed the morphology, kinematics, and dynamics of two luminous infrared spiral galaxies, NGC 5257 and NGC 5258, in which SF is mostly confined to the spiral arms, in order to understand interactions between galaxies of equivalent masses and SF processes during the encounter. Using scanning Fabry-Perot interferometry, we studied the contribution of circular and non-circular motions and the response of the ionized gas to external perturbations. We compared the kinematics with direct images of the pair and traced the SF processes and gravitational effects due to the presence of the other galaxy. The SED of each member of the pair was fitted. A mass model was fitted to the rotation curve of each galaxy. Large, non-circular motions detected in both galaxies are associated with a bar, spiral arms, and HII regions for the inner parts of the galaxies, and with the tidal interaction for the outer parts of the discs. Bifurcations in the rotation curves indicate that the galaxies have recently undergone their pericentric passage. The pattern speed of a perturbation of one of the galaxies is computed. Location of a possible corotation seems to indicate that the gravitational response of the ionized gas in the outer parts of the disc is related to the regions where ongoing SF is confined. The SED fit indicates a slightly different star formation history for each member of the pair. For both galaxies, a pseudo-isothermal halo better fits the global mass distribution.

قيم البحث

اقرأ أيضاً

The galaxy NGC 4418 contains one of the most compact obscured nuclei within a luminous infrared galaxy (LIRG) in the nearby Universe. This nucleus contains a rich molecular gas environment and an unusually high ratio of infrared to radio luminosity ( q-factor). The compact nucleus is powered by either a compact starburst or an active galactic nucleus (AGN). The aim of this study is to constrain the nature of the nuclear region (starburst or AGN) within NGC 4418 via very-high-resolution radio imaging. Archival data from radio observations using the EVN and MERLIN interferometers are imaged. Sizes and flux densities are obtained by fitting Gaussian intensity distributions to the image. The average spectral index of the compact radio emission is estimated from measurements at 1.4 GHz and 5.0 GHz. The nuclear structure of NGC 4418 visible with EVN and MERLIN consists of eight compact (<49 mas i.e. <8 pc) features spread within a region of 250 mas, i.e. 41 pc. We derive an inverted spectral index $alphage0.7$ ($S_ upropto u^{alpha}$) for the compact radio emission. Brightness temperatures $>10^{4.8}$ K indicate that these compact features cannot be HII-regions. The complex morphology and inverted spectrum of the eight detected compact features is evidence against the hypothesis that an AGN alone is powering the nucleus of NGC 4418. The compact features could be super star clusters (SSCs) with intense star formation, and their associated free-free absorption could then naturally explain both their inverted radio spectrum and the low radio to IR ratio of the nucleus. The required star formation area density is extreme, however, and close to the limit of what can be observed in a well-mixed thermal/non-thermal plasma produced by star-formation, and is also close to the limit of what can be physically sustained.
We studied the apparent galaxy pair NGC 1232 / NGC 1232A with Chandra, looking for evidence of interactions and collisions. We report that there is no cloud of diffuse emission in NGC 1232, contrary to previous claims in the literature. Instead, we f ind that the small companion galaxy NGC 1232A contains three ultraluminous X-ray sources (ULXs) with peak 0.3-10 keV luminosities above 10^{40} erg/s (assuming a cosmological distance of 93 Mpc for this galaxy). For its mass, morphology, metal abundance and bright ULX population, NGC 1232A is analogous to the more nearby late-type spiral NGC 1313.
Hot atmospheres of massive galaxies are enriched with metals. Elemental abundances measured in the X-ray band have been used to study the chemical enrichment of supernova remnants, elliptical galaxies, groups and clusters of galaxies. Here we measure the elemental abundances of the hot atmosphere of luminous infrared galaxy Arp 299 observed with XMM-Newton. To measure the abundances in the hot atmosphere, we use a multi-temperature thermal plasma model, which provides a better fit to the Reflection Grating Spectrometer data. The observed Fe/O abundance ratio is subsolar, while those of Ne/O and Mg/O are slightly above solar. Core-collapse supernovae (SNcc) are the dominant metal factory of elements like O, Ne, and Mg. We find some deviations between the observed abundance patterns and theoretical ones from a simple chemical enrichment model. One possible explanation is that massive stars with $M_{star}gtrsim23-27~M_{odot}$ might not explode as SNcc and enrich the hot atmosphere. This is in accordance with the missing massive SNcc progenitors problem, where very massive progenitors $M_{star}gtrsim18~M_{odot}$ of SNcc have not been clearly detected. It is also possible that theoretical SNcc nucleosynthesis yields of Mg/O yields are underestimated.
We present subarcsecond resolution infrared (IR) imaging and mid-IR spectroscopic observations of the Seyfert 1.9 galaxy NGC 2992, obtained with the Gemini North Telescope and the Gran Telescopio CANARIAS (GTC). The N-band image reveals faint extende d emission out to ~3 kpc, and the PAH features detected in the GTC/CanariCam 7.5-13 micron spectrum indicate that the bulk of this extended emission is dust heated by star formation. We also report arcsecond resolution MIR and far-IR imaging of the interacting system Arp 245, taken with the Spitzer Space Telescope and the Herschel Space Observatory. Using these data, we obtain nuclear fluxes using different methods and find that we can only recover the nuclear fluxes obtained from the subarcsecond data at 20-25 micron, where the AGN emission dominates. We fitted the nuclear IR spectral energy distribution of NGC 2992, including the GTC/CanariCam nuclear spectrum (~50 pc), with clumpy torus models. We then used the best-fitting torus model to decompose the Spitzer/IRS 5-30 spectrum (~630 pc) in AGN and starburst components, using different starburst templates. We find that, whereas at shorter mid-IR wavelengths the starburst component dominates (64% at 6 micron), the AGN component reaches 90% at 20 micron. We finally obtained dust masses, temperatures and star formation rates for the different components of the Arp 245 system and find similar values for NGC 2992 and NGC 2993. These measurements are within those reported for other interacting systems in the first stages of the interaction.
In optical images, the not amply studied isolated interacting galaxy pair KPG 486 (NGC 6090) displays similar features to the galaxy pair The Antennae (NGC 4038/39). To compare the distribution of ionized hydrogen gas, morphology and kinematic and dy namic behaviour between both galaxy pairs, we present observations in the H$alpha$ emission line of NGC 6090 acquired with the scanning Fabry-Perot interferometer, PUMA. For each galaxy in NGC 6090 we obtained several kinematic parameters, its velocity field and its rotation curve, we also analysed some of the perturbations induced by their encounter. We verified the consistency of our results by comparing them with kinematic results from the literature. The comparison of our results on NGC 6090 with those obtained in a previous similar kinematic analysis made for The Antennae highlighted great differences between these galaxy pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا