ترغب بنشر مسار تعليمي؟ اضغط هنا

H$alpha$ kinematics of the isolated interacting galaxy pair KPG 486 (NGC 6090)

90   0   0.0 ( 0 )
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In optical images, the not amply studied isolated interacting galaxy pair KPG 486 (NGC 6090) displays similar features to the galaxy pair The Antennae (NGC 4038/39). To compare the distribution of ionized hydrogen gas, morphology and kinematic and dynamic behaviour between both galaxy pairs, we present observations in the H$alpha$ emission line of NGC 6090 acquired with the scanning Fabry-Perot interferometer, PUMA. For each galaxy in NGC 6090 we obtained several kinematic parameters, its velocity field and its rotation curve, we also analysed some of the perturbations induced by their encounter. We verified the consistency of our results by comparing them with kinematic results from the literature. The comparison of our results on NGC 6090 with those obtained in a previous similar kinematic analysis made for The Antennae highlighted great differences between these galaxy pairs.



قيم البحث

اقرأ أيضاً

In this work we present scanning Fabry-Perot H$alpha$ observations of the isolated interacting galaxy pair NGC 5278/79 obtained with the PUMA Fabry-Perot interferometer. We derived velocity fields and rotation curves for both galaxies. For NGC 5278 w e also obtained the residual velocity map to investigate the non-circular motions, and estimated its mass by fitting the rotation curve with a disk+halo components. We test three different types of halo (pseudo-isothermal, Hernquist and Navarro Frenk White) and obtain satisfactory fits to the rotation curve for all profiles. The amount of dark matter required by pseudo-isothermal profile is about ten times smaller than, that for the other two halo distributions. Finally, our kinematical results together with the analysis of dust lanes distribution and of surface brightness profiles along the minor axis allowed us to determine univocally that both components of the interacting pair are trailing spirals.
In this work we present scanning Fabry-Perot H$alpha$ observations of the isolated interacting galaxy pair NGC 5278/79 obtained with the PUMA Fabry-Perot interferometer. We derived velocity fields, various kinematic parameters and rotation curves for both galaxies. Our kinematical results together with the fact that dust lanes have been detected in both galaxies, as well as the analysis of surface brightness profiles along the minor axis, allowed us to determine that both components of the interacting pair are trailing spirals.
We study the kinematics and dynamics of the M51-type interacting galaxy pair KPG 302 (NGC 3893/96). We analyse the distribution of the dark matter (DM) halo of the main galaxy in order to explore possible differences between DM halos of isolated gala xies and those of galaxies belonging to a pair. The velocity field of each galaxy was obtained using scanning Fabry-Perot interferometry. A two-dimensional kinematic and dynamical analysis of each galaxy and the pair as a whole is done emphasizing the contribution of circular and non-circular velocities. Non-circular motions can be traced on the rotation curves of each galaxy allowing us to differentiate between motions associated to particular features and motions that reflect the global mass distribution of the galaxy. For the main galaxy of the pair, NGC 3893, optical kinematic information is complemented with HI observations from the literature to build a multi-wavelength rotation curve. We try to fit this curve with a mass-distribution model using different DM halos. We find that the multi-wavelength rotation curve of NGC 3893, cleaned from the effect of non-circular motions, cannot be fitted neither by a pseudo-isothermal nor by a NFW DM halo.
We present H alpha observations of the isolated interacting galaxy pair NGC 5426/27 using the scanning Fabry-Perot interferometer PUMA. The velocity field, various kinematical parameters and rotation curve for each galaxy were derived. The FWHM map a nd the residual velocities map were also computed to study the role of non-circular motions of the gas. Most of these motions can be associated with the presence of spiral arms and structure such as central bars. We found a small bar-like structure in NGC 5426, a distorted velocity field for NGC 5427 and a bridge-like feature between both galaxies which seems to be associated with NGC 5426. Using the observed rotation curves, a range of possible masses was computed for each galaxy. These were compared with the orbital mass of the pair derived from the relative motion of the participants. The rotation curve of each galaxy was also used to fit different mass distribution models considering the most common theoretical dark halo models. An analysis of the interaction process is presented and a possible 3D scenario for this encounter is also suggested.
Using the data obtained previously from Fabry-Perot interferometry, we study the orbital characteristics of the interacting pair of galaxies KPG 302 with the aim to estimate a possible interaction history, the conditions necessary for the spiral arms formation and initial satellite mass. We found by performing N-body/SPH simulations of the interaction that a single passage can produce a grand design spiral pattern in less than 1 Gyr. Althought we reproduce most of the features with the single passage, the required satellite to host mass ratio should be 1:5, which is not confirmed with the dynamical mass estimate made from the measured rotation curve. We conclude that a more realistic interaction scenario would require several passages in order to explain the mass ratio discrepancy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا