ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA detections of the youngest protostars in Ophiuchus

66   0   0.0 ( 0 )
 نشر من قبل Rachel Friesen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of 1.1 mm dust continuum and CO 2-1 emission toward six dense cores within the Ophiuchus molecular cloud. We detect compact, sub-arcsecond continuum structures toward three targets, two of which (Oph A N6 and SM1) are located in the Ophiuchus A ridge. Two targets, SM1 and GSS 30, contain two compact sources within the ALMA primary beam. We argue that several of the compact structures are small ($R lesssim 80$ au) accretion disks around young protostars, due to their resolved, elongated structures, coincident radio and x-ray detections, or bipolar outflow detections. While CO line wings extend to $pm 10-20$ km s$^{-1}$ for the more evolved sources GSS 30 IRS3 and IRS1, CO emission toward other sources, where detected, only extends a few km s$^{-1}$ from the cloud $v_mathrm{LSR}$. The dust spectral index toward the compact objects suggests that the disks are either optically thick at 1.1 mm, or that significant grain growth has already occurred. We identify, for the first time, a single compact continuum source ($R sim 100$ au) toward N6 embedded within a larger continuum structure. SM1N is extended in the continuum but is highly centrally concentrated, with a density profile that follows a $r^{-1.3}$ power law within 200 au, and additional structure suggested by the uv-data. Both N6 and SM1N show no clear bipolar outflows with velocities greater than a few km s$^{-1}$ from the cloud velocity. These sources are candidates to be the youngest protostars or first hydrostatic cores in the Ophiuchus molecular cloud.

قيم البحث

اقرأ أيضاً

We present a 0.15$^{primeprime}$ resolution (21 au) ALMA 870 $mu$m continuum survey of 25 pointings containing 31 young stellar objects in the Ophiuchus molecular clouds. Using the dust continuum as a proxy for dust mass and circumstellar disk radius in our sample, we report a mean mass of 2.8$^{+2.1}_{-1.3}$ and 2.5$^{+9.2}_{-1.1}$ M$_{oplus}$ and a mean radii of 23.5$^{+1.8}_{-1.2}$ and 16.5$^{+2.8}_{-0.9}$ au, for Class I and Flat spectrum protostars, respectively. In addition, we calculate the multiplicity statistics of the dust surrounding young stellar objects in Ophiuchus. The multiplicity fraction (MF) and companion star fraction (CSF) of the combined Class I and Flats based solely on this work is 0.25 $pm$ 0.09 and 0.33 $pm$ 0.10, respectively, which are consistent with the values for Perseus and Orion. While we see clear differences in mass and radius between the Ophiuchus and Perseus/Orion protostellar surveys, we do not see any significant differences in the multiplicities of the various regions. We posit there are some differences in the conditions for star formation in Ophiuchus that strongly affects disk size (and consequently disk mass), but does not affect system multiplicity, which could imply important variation in planet formation processes.
We present 0.25 arcsec resolution (35 au) ALMA 1.3 mm dust polarization observations for 37 young stellar objects (YSOs) in the Ophiuchus cloud. These data encompass all the embedded protostars in the cloud and several Flat and Class II objects to pr oduce the largest, homogeneous study of dust polarization on disk scales to date. The goal of this study is to study dust polarization down to disk scales. We find that 14/37 (38%) of the YSOs are detected in polarization. Nine of these sources have uniform polarization angles and four sources have azimuthal polarization. The sources with uniform polarization tend to have steeper inclinations (> 60 degree) than those with azimuthal polarization (< 60 degree). The majority (9/14) of the detected sources have polarization morphologies and disk properties consistent with dust self-scattering in optically thick disks. The remaining sources may be instead tracing magnetic fields. Their inferred field directions from rotating the polarization vectors by 90 degree are mainly poloidal or hourglass shaped. We find no evidence of a strong toroidal field component toward any of our disks. For the 23 YSOs that are undetected in polarization, roughly half of them have 3-sigma upper limits of < 2%. These sources also tend to have inclinations < 60 degree and they are generally compact. Since lower inclination sources tend to have azimuthal polarization, these YSOs may be undetected in polarization due to unresolved polarization structure within our beam. We propose that disks with inclinations > 60 degree are the best candidates for future polarization studies of dust self-scattering as these systems will generally show uniform polarization vectors that do not require very high resolution to resolve. We release the continuum and polarization images for all the sources with this publication. Data from the entire survey can be obtained from Dataverse.
We present high resolution (~ 30 au) ALMA Band 6 dust polarization observations of VLA 1623. The VLA 1623 data resolve compact ~ 40 au inner disks around the two protobinary sources, VLA 1623-A and VLA 1623-B, and also an extended ~ 180 au ring of du st around VLA 1623-A. This dust ring was previously identified as a large disk in lower-resolution observations. We detect highly structured dust polarization toward the inner disks and the extended ring with typical polarization fractions ~ 1.7% and ~ 2.4%, respectively. The two components also show distinct polarization morphologies. The inner disks have uniform polarization angles aligned with their minor axes. This morphology is consistent with expectations from dust scattering. By contrast, the extended dust ring has an azimuthal polarization morphology not previously seen in lower-resolution observations. We find that our observations are well fit by a static, oblate spheroid model with a flux-frozen, poloidal magnetic field. We propose that the polarization traces magnetic grain alignment likely from flux freezing on large scales and magnetic diffusion on small scales. Alternatively, the azimuthal polarization may be attributed to grain alignment by the anisotropic radiation field. If the grains are radiatively aligned, then our observations indicate that large (~ 100 um) dust grains grow quickly at large angular extents. Finally, we identify significant proper motion of VLA 1623 using our observations and those in the literature. This result indicates that the proper motion of nearby systems must be corrected for when combining ALMA data from different epochs.
Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present ALMA Cycle 2 observations of 60 star less and protostellar cores in the Ophiuchus molecular cloud. We detect eight compact substructures which are >15 arcsec from the nearest Spitzer YSO. Only one of these has strong evidence for being truly starless after considering ancillary data, e.g., from Herschel and X-ray telescopes. An additional extended emission structure has tentative evidence for starlessness. The number of our detections is consistent with estimates from a combination of synthetic observations of numerical simulations and analytical arguments. This result suggests that a similar ALMA study in the Chamaeleon I cloud, which detected no compact substructure in starless cores, may be due to the peculiar evolutionary state of cores in that cloud.
We present a high angular resolution ($sim 0.2^{primeprime}$), high sensitivity ($sigma sim 0.2$ mJy) survey of the 870 $mu$m continuum emission from the circumstellar material around 49 pre-main sequence stars in the $rho$ Ophiuchus molecular cloud. Because most millimeter instruments have resided in the northern hemisphere, this represents the largest high-resolution, millimeter-wave survey of the circumstellar disk content of this cloud. Our survey of 49 systems comprises 63 stars; we detect disks associated with 29 single sources, 11 binaries, 3 triple systems and 4 transition disks. We present flux and radius distributions for these systems; in particular, this is the first presentation of a reasonably complete probability distribution of disk radii at millimeter-wavelengths. We also compare the flux distribution of these protoplanetary disks with that of the disk population of the Taurus-Auriga molecular cloud. We find that disks in binaries are both significantly smaller and have much less flux than their counterparts around isolated stars. We compute truncation calculations on our binary sources and find that these disks are too small to have been affected by tidal truncation and posit some explanations for this. Lastly, our survey found 3 candidate gapped disks, one of which is a newly identified transition disk with no signature of a dip in infrared excess in extant observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا