ﻻ يوجد ملخص باللغة العربية
We report the discovery of a new, polluted, magnetic white dwarf in the Luyten survey of high-proper motion stars. High-dispersion spectra of NLTT 7547 reveal a complex heavy element line spectrum in a cool (~5 200 K) hydrogen-dominated atmosphere showing the effect of a surface averaged field of 163 kG, consistent with a 240 kG centred dipole, although the actual field structure remains uncertain. The abundance pattern shows the effect of accreted material with a distinct magnesium-rich flavour. Combined with earlier identifications, this discovery supports a correlation between the incidence of magnetism in cool white dwarfs and their contamination by heavy elements.
It is difficult to study the interiors of terrestrial planets in the Solar System and the problem is magnified for distant exoplanets. However, sometimes nature is helpful. Some planetary bodies are torn to fragments and consumed by the strong gravit
It has long been suspected that metal polluted white dwarfs (types DAZ, DBZ, and DZ) and white dwarfs with dusty disks possess planetary systems, but a specific physical mechanism by which planetesimals are perturbed close to a white dwarf has not ye
The element beryllium is detected for the first time in white dwarf stars. This discovery in the spectra of two helium-atmosphere white dwarfs was made possible only because of the remarkable overabundance of Be relative to all other elements, heavie
The absence of magnetic white dwarfs with a non-degenerate low-mass stellar companion in a wide binary is still very intriguing and at odds with the hypothesis that magnetic white dwarfs are the progenies of the magnetically peculiar Ap/Bp stars. On
We present an analysis of intermediate-dispersion spectra and photometric data of the newly identified cool, polluted white dwarf NLTT19868. The spectra obtained with X-shooter on the Very Large Telescope (VLT)-Melipal show strong lines of calcium, a