ﻻ يوجد ملخص باللغة العربية
It is difficult to study the interiors of terrestrial planets in the Solar System and the problem is magnified for distant exoplanets. However, sometimes nature is helpful. Some planetary bodies are torn to fragments and consumed by the strong gravity close to the descendants of Sun-like stars, white dwarfs. We can deduce the general composition of the planet when we observe the spectroscopic signature of the white dwarf. Most planetary fragments that fall into white dwarfs appear to be rocky with a variable fraction of associated ice and carbon. These white dwarf planetary systems provide a unique opportunity to study the geology of exoplanetary systems.
We present evidence that excesses in Be in polluted white dwarfs (WDs) are the result of accretion of icy exomoons that formed in the radiation belts of giant exoplanets. Here we use excess Be in the white dwarf GALEX J2339-0424 as an example. We con
Planetary systems can survive the stellar evolution, as evidenced by the atmospheric metal pollution and dusty disks of single white dwarfs. Recent observations show that 1 to 4 percent of single white dwarfs are accompanied by dusty disks, while the
White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by conside
It has long been suspected that metal polluted white dwarfs (types DAZ, DBZ, and DZ) and white dwarfs with dusty disks possess planetary systems, but a specific physical mechanism by which planetesimals are perturbed close to a white dwarf has not ye
The element beryllium is detected for the first time in white dwarf stars. This discovery in the spectra of two helium-atmosphere white dwarfs was made possible only because of the remarkable overabundance of Be relative to all other elements, heavie